
6 Estimation

6.1 Introduction

The purpose of statistics is to make inferences about populations based on data from a small
sample of that population. Populations are characterized by probability distributions which
can be described by numerical parameters. The population mean µ and population variance
σ2 are parameters common to all probability distributions. In addition, some populations
can be described by other natural parameters. One example is the population of all regis-
tered voters in Rhode Island. If we are interested in the yes/no question “Are you going to
vote for Gina Raimondo?”, a natural parameter is p, the proportion of the population who
plans on voting for Raimondo.

The setup is exactly the same as with sampling. Suppose we are studying a population whose
distribution is characterized by a parameter of interest which we will denote θ (this could
be the population mean, population variance, proportion of voters supporting Raimondo,
or some other parameter). We will take n independent, identically distributed samples
Y1, . . . , Yn from our population. An estimator is a function of our n samples which is designed
to give us information about the population parameter. There are two types of estimators
we will discuss:

1. A point estimator produces a single number which we think is close to the parameter
of interest. We will learn several ways to quantitatively evaluate the “goodness” of a
point estimator

2. An interval estimate produces an interval (often called a confidence interval) in which
we believe our parameter of interest lies. We will learn how to construct confidence
intervals which include the parameter of interest with a given probability.

6.2 Point Estimators

We start our discussion with point estimators. We have already met one point estimator,
the sample mean Ȳ . The sample mean is an estimator since it is a function of our n samples.
It is an estimator for the population mean. For another example, suppose we are polling n
voters out of a population of registered voters and asking them if they are voting for Gina
Raimondo. The parameter of interest is p, the proportion of registered voters who will vote
for Raimondo. Let Y be the number of voters in our sample who are voting for Raimondo.
Then the sample proportion p̂ = Y/n is an estimator for the population proportion p. (The
“hat” over the p indicates that it is an estimator for the parameter p).

Since we are applied mathematicians, we need quantitative tools to tell whether an estimator
is any good. Let θ̂ be an estimator for the parameter θ. The first criterion we can use to
evaluate an estimator is bias. We would like the expected value of our estimator to be the
actual value of the parameter we are trying to estimate, i.e. E(θ̂) = θ. An estimator which
has this property is called unbiased
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Bias of an Estimator

Let θ̂ be an estimator for a parameter θ. The estimator θ̂ is unbiased if E(θ̂) = θ.
Otherwise, the estimator θ̂ is biased. The bias of θ̂ is given by

Bias(θ̂) = E(θ̂)− θ

Let’s look at the estimators we have seen so far. The sample mean Ȳ is an estimator for the
population mean µ (here we abandon our “hat”-convention, and call this Ȳ rather than µ̂).
We showed in the last section that E(Ȳ ) = µ, thus the sample mean is an unbiased estimator
for the population mean.

What about the sample proportion estimator we use in polling? Suppose we poll n voters
in a population, and let Y be the number of voters in our sample who are voting for Gina
Raimondo. As long as the sample is small enough (less than 1/20 of the population size), we
can take Y to be a binomial random variable with parameters n and p. For our estimator
p̂ = Y/n,

E(p̂) = E
(
Y

n

)
=

1

n
E(Y ) =

np

n
= p

where we have used the expected value of a binomial random variable. Since E(p̂) = p, this
estimator is unbiased as well. We will see an example of a biased estimator later.

A perhaps better measure of the “goodness” of an estimator is its mean square error, the
average of the square distance of the estimator from the parameter of interest.

Mean Square Error

Let θ̂ be an estimator for a parameter θ. The mean square error of θ̂ is defined by

MSE(θ̂) = E[(θ̂ − θ)2]

If Bias(θ̂) is the bias of θ̂ and V ar(θ̂) is the variance of θ̂, then

MSE(θ̂) = [Bias(θ̂)]2 + V ar(θ̂)

Note that the MSE can be divided into two components: variance and bias squared. Both of
these are positive. We have discussed above how low bias is a good quality for an estimator.
Low variance is a desired quality for an estimator as well since ideally we would like the
distribution of the estimator to cluster tightly about the parameter of interest. In general,
if we keep the sample size fixed, there is a tradeoff between bias and variance. For a given
MSE, if we wish our estimator to have lower bias, then we must accept a higher variance
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and vice versa.

To show the relationship between MSE, bias, and variance, we take the definition of MSE
and add and subtract E(θ̂) inside the parentheses.

MSE(θ̂) = E[(θ̂ − θ)2]

= E[(θ̂ − E(θ̂)) + (E(θ̂)− θ)]2

= E[(θ̂ − E(θ̂))2] + 2E[(θ̂ − E(θ̂))(E(θ̂)− θ)︸ ︷︷ ︸
constant

] + E[(E(θ̂)− θ)2︸ ︷︷ ︸
constant

]

= V ar(θ̂) + 2(E(θ̂)− θ)E[(θ̂ − E(θ̂))] + (E(θ̂)− θ)2

= V ar(θ̂) + 2(E(θ̂)− θ)(E(θ̂)− E(θ̂)︸ ︷︷ ︸
=0

) + [Bias(θ̂)]2

= V ar(θ̂) + [Bias(θ̂)]2

Let’s look at the MSE of the two estimators we discussed above.

1. Sample mean Ȳ = 1
n

∑n
i=1 Yi

We showed that this estimator is unbiased, so the MSE is equal to the variance. We
showed in a previous section that the variance of the sample mean is σ2/n, where σ2

is the population variance. Thus we have

MSE(Ȳ ) =
σ2

n

Note that the MSE goes to 0 as n→∞, i.e. the error of our estimator decreases as our
sample gets larger. This makes intuitive sense that a larger sample provides a better
estimator for the population mean.

2. Sample proportion. p̂ = Y
n

.

Recall that we are assuming that Y ∼ Binomial(n, p). We showed above that this
estimator is also unbiased, thus once again the MSE is equal to the variance. Recalling
that the variance of a binomial random variable is np(1− p),

MSE(p̂) = V ar

(
Y

n

)
=

1

n2
V ar(Y )

=
np(1− p)

n2

=
p(1− p)

n
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Sometimes we are interested in studying the difference between two populations. Here are
some examples of that.

1. Suppose we are interested in whether Brown University first-year students or seniors
get more sleep. In this case, the parameter of interest is the difference in the mean
amount of sleep between first-years and seniors. If µ1 and σ2

1 are the mean and variance
of the amount of sleep of first-years and µ2 and σ2

2 are the same for seniors, then
mathematically our parameter of interest is µ1 − µ2. If we take a sample of n1 first-
year students and n2 seniors and compute the sample means Ȳ1 and Ȳ2, then Ȳ1 − Ȳ2

is an estimator for µ1−µ2. By linearity of expectation and our result for the expected
value of the sample mean, the expected value of the sample mean is µ1 − µ2, so this
estimator is unbiased. For the variance of this estimator, we use the formula for the
variance of a sum (assuming the samples are independent), and recall that constants
are squared when they are pulled out of the variance:

V ar(Ȳ1 − Ȳ2) = V ar(Ȳ1) + V ar(−Ȳ2)

= V ar(Ȳ1) + (−1)2V ar(Ȳ2)

= V ar(Ȳ1) + V ar(Ȳ2)

=
σ2

1

n1

+
σ2

2

n2

2. Suppose we are interested in the preference for Gina Raimondo in rural versus urban
voters in Rhode Island. The parameter of interest here is the difference in the propor-
tion of Raimondo supporters between rural and urban areas. First, we have to define
“rural” and “urban”. This is admittedly tricky in a small state like Rhode Island,
but we could for example take “urban” to mean living in a city with population of
40,000 or more (in Rhode Island, this would include Woonsocket, East Providence,
Pawtucket, Cranston, Warwick, and Providence). What are advantages or drawbacks
to this definition? If p1 is the proportion of Raimondo supports in rural areas and p2 is
the proportion of Raimondo supporters in urban areas, then the parameter of interest
is p1 − p2. Suppose we sample n1 voters from rural areas and n2 voters from urban
areas. Let Y1 and Y2 be the proportion of rural and urban voters (respectively) who
support Raimondo. Then

p̂1 − p̂2 =
Y1

n1

− Y2

n2

is an estimator for p1 − p2. By linearity of expectation and the result for a single
population, the expected value of this estimator is p1−p2, so this estimator is unbiased.
What is the variance of this estimator? As above, using the formula for the variance
of a sum of two independent random variables,

V ar(p̂1 − p̂2) = V ar(p̂1) + V ar(−p̂2)

= V ar(p̂1) + (−1)2V ar(p̂2)

= V ar(p̂1) + V ar(p̂2)

=
p1(1− p1)

n1

+
p2(1− p2)

n2
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We summarize these common estimators for population mean and proportion in the following
table:

Parameter of
Interest

Sample
Size

Estimator
Expected
Value

Variance
Standard
Deviation

µ n Ȳ µ σ2

n
σ√
n

p n p̂ = Y
n

p p(1−p)
n

√
p(1−p)
n

µ1 − µ2 n1 and n2 Ȳ1 − Ȳ2 µ1 − µ2
σ2
1

n1
+

σ2
2

n2

√
σ2
1

n1
+

σ2
2

n2

p1 − p2 n1 and n2 p̂1 − p̂2 p1 − p2
p1(1−p1)

n1
+ p2(1−p2)

n2

√
p1(1−p1)

n1
+ p2(1−p2)

n2

The standard deviation of an estimator is sometimes called the standard error. You may see
that term in the scientific literature, but we will not use it in class. Note that the expected
values and variances in the table above hold regardless of the distribution of the underly-
ing population. In the case that the population is normal, the sample mean estimators Ȳ
and Ȳ1 − Ȳ2 have a normal distribution, as discussed in the chapter on sampling distribu-
tions. However, for large sample sizes (approximately n ≥ 30), the central limit theorem
comes into play. Thus for large sample sizes, the sample mean estimators Ȳ and Ȳ1− Ȳ2 are
approximately normally distributed regardless of the distribution of the underlying popula-
tion. For a binomial population, the population proportion estimators p̂ and p̂1− p̂2 are also
approximately normal for large sample sizes. How large a sample size do we need in this
case? It depends on p. The farther p is from 1/2, the larger sample size n we need for the
binomial distribution to be approximately normal. In the homework, we showed that this is
the case when 0 ≤ 3

√
pq/n ≤ 1, where q = 1 − p. We then showed that an easier rule to

check is that the binomial distribution is approximately normal when n ≥ 9p/q and n ≥ 9q/p.

As another example, let’s look at our estimators for population variance. Recall from the
previous section that the sample variance is given by:

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2

where Ȳ is the sample mean. The factor of (n − 1) in the denominator seems peculiar.
It seems more natural to divide by n and use the following estimator for the population
variance:

S ′2 =
1

n

n∑
i=1

(Yi − Ȳ )2

We will show that while they are both estimators for the sample variance, S ′2 is biased
whereas S2 is unbiased. Since S2 is unbiased, we call it the sample variance.

First we show S ′2 is biased by computing its expected value. This is done in several steps.

5



1. First we find a nice formula for
∑n

i=1(Yi − Ȳ )2.

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(Y 2
i − 2YiȲ + Ȳ 2)

=
n∑
i=1

Y 2
i − 2Ȳ

n∑
i=1

Yi +
n∑
i=1

Ȳ 2

=
n∑
i=1

Y 2
i − 2nȲ 2 + nȲ 2

=
n∑
i=1

Y 2
i − nȲ 2

2. Next we take the expected value of this. By linearity of expectation,

E

[
n∑
i=1

(Yi − Ȳ )2

]
= E

(
n∑
i=1

Y 2
i

)
− nE(Ȳ 2)

=
n∑
i=1

E(Y 2
i )− nE(Ȳ 2)

3. Next we use the Magic Variance Formula “in reverse” to compute E(Y 2
i ) and E(Ȳ 2).

V ar(Yi) = E(Y 2
i )− [E(Yi)]

2

E(Y 2
i ) = V ar(Yi) + [E(Yi)]

2

= σ2 + µ2

Similarly,

E(Ȳ 2) = V ar(Ȳ ) + [E(Ȳ )]2

=
σ2

n
+ µ2

4. We then plug these into the expression from step 3.

E

[
n∑
i=1

(Yi − Ȳ )2

]
=

n∑
i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

)
= nσ2 + nµ2 − σ2 − nµ2

= (n− 1)σ2
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5. Finally we use this result to compute the expected value of S ′2.

E(S ′2) = E

[
1

n

n∑
i=1

(Yi − Ȳ )2

]

=
1

n
E

[
n∑
i=1

(Yi − Ȳ )2

]
=

1

n
(n− 1)σ2

=
n− 1

n
σ2

Since E(S ′2) 6= σ2, this estimator is biased. For large n, however, (n− 1)/n ≈ 1, so the bias
is minimal. We can convert this to an unbiased estimator by multiplying by n/(n− 1). This
is legitimate since n is a known constant (the sample size) and not one of the parameters we
are trying to estimate:

E
(

n

n− 1
S ′2
)

=
n

n− 1
E(S ′2)

=
n

n− 1

n− 1

n
σ2

= σ2

So we have found an unbiased estimator for σ2. But we also have:

n

n− 1
S ′2 =

n

n− 1

1

n

n∑
i=1

(Yi − Ȳ )2

=
1

n− 1

n∑
i=1

(Yi − Ȳ )2

= S2

Thus S2 is an unbiased estimator for the population variance σ2.

6.3 Interval Estimators

Once again, suppose we are studying a population whose distribution is characterized by
a parameter of interest which we will denote θ. We will take n independent, identically
distributed samples Y1, . . . , Yn from our population. An interval estimator or confidence in-
terval uses the samples Y1, . . . , Yn to construct a confidence interval [θ̂L, θ̂U ]. (The subscripts
L and U denote the lower and upper endpoints of the interval, and the “hat” on the θ re-
minds us that this is an estimator). Note that the confidence interval is a random variable,
and is a function of our n sample points. If we take a different sample, we will get a different
confidence interval.

We would like the confidence interval to have the following properties:
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1. It should contain the parameter of interest θ.

2. It should be relatively narrow (otherwise we haven’t learned much).

3. We should be able to calculate the probability that our confidence interval will enclose
our parameter of interest. This probability is called the confidence coefficient.

Suppose we have constructed a confidence interval [θ̂L, θ̂U ] for our parameter θ from our n
samples Y1, . . . , Yn. Then the confidence coefficient is denoted (1− α), and so we have1:

P(θ̂L ≤ θ ≤ θ̂U) = 1− α

The confidence interval [θ̂L, θ̂U ] is sometimes called a two-sided confidence interval. We can
also construct one-sided confidence intervals, although we will not do so in this course.

6.3.1 Confidence Intervals for Large Sample Sizes

Earlier we discussed the common unbiased estimators Ȳ (sample mean) and p̂ (sample pro-
portion), as well as the equivalent estimators for the difference of two populations. For large
sample sizes (n ≥ 30 for the sample mean, and using our binomial rule for the sample pro-
portion), the central limit theorem tells us that these estimators are all normally distributed
with mean and standard deviation given in the table above. Thus, if we convert to the stan-
dard normal random variable, we can construct a confidence interval with desired confidence
coefficient (1− α) using the Z distribution. Let’s see how we can do this.

Let θ be our parameter of interest (either µ, p, µ1−µ2, or p1−p2), and let θ̂ be the appropriate
unbiased estimator from the table above. In all cases, since the estimator is unbiased, the
expected value E(θ̂) = θ. Let σθ̂ be the standard deviation of θ̂ (which we can look up in
the table above). Then:

Z =
θ̂ − θ
σθ̂

is (approximately) a standard normal random variable. Suppose we want a confidence inter-
val for θ which has a confidence coefficient (1−α). We will always use a two-sided, symmetric
confidence interval (although you do not have to do this).

α/2 α/2

1-α

-z
α/2

z
α/2

1The reasons for the notation (1 − α) will be more evident when we discuss hypothesis testing; roughly
speaking, α is the probability of a false positive result.
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Converting to the standard normal random variable, this is equivalent to finding values
−zα/2 and zα/2 such that P(−zα/2 ≤ Z ≤ zα/2) = (1 − α). This is illustrated in the picture
above. To find −zα/2 and zα/2, we can use the Z table. For example, if (1− α) = 0.95, then
α/2 = 0.025. Consulting the Z table, we find that −zα/2 = −1.96. By symmetry of the
standard normal distribution about its mean of 0, zα/2 = 1.96.

To find our confidence interval, we convert from the standard normal distribution back to
the distribution of our estimator, which is Normal(θ, σθ̂). Substituting for Z, we have

P

(
−zα/2 ≤

θ̂ − θ
σθ̂
≤ zα/2

)
= 1− α

Now we just manipulate this to get it into the form we want.

P
(
−zα/2σθ̂ ≤ θ̂ − θ ≤ zα/2σθ̂

)
= 1− α

P
(
−θ̂ − zα/2σθ̂ ≤ −θ ≤ −θ̂ + zα/2σθ̂

)
= 1− α

P
(
θ̂ − zα/2σθ̂ ≤ θ ≤ θ̂ + zα/2σθ̂

)
= 1− α

where to get the last line we multiplied by -1 and flipped all the inequalities. Thus the (1−α)
confidence interval for θ is:

[θ̂L, θ̂U ] = [θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂]

We can also write this in terms the population standard deviation σ and the sample size n
by substituting σθ̂ = σ/

√
n.

[θ̂L, θ̂U ] =

[
θ̂ − zα/2

σ√
n
, θ̂ + zα/2

σ√
n

]
Let’s do some examples.

Example. A ball bearing machine produces ball bearings whose diameters are normally dis-
tributed with mean µ mm and standard deviation σ = 0.1 mm. We would like to estimate
the mean µ using a 90% confidence interval. To do this, we take a sample size of n = 9 ball
bearings and use the sample mean Ȳ as our estimator for µ. Suppose we measure Ȳ = 10.0
mm. What is the 90% confidence interval for µ?

Although this is not a large sample size, we can still find a confidence interval in this case
because we are assuming that the population is normally distributed. Thus the sample mean
Ȳ will always be normally distributed. Since we know the population standard deviation,
we can convert to the standard normal Z distribution directly without appealing to approx-
imations which require a large sample size. First compute the standard deviation of our
estimator:

σȲ =
σ√
n

=
0.1√

9
=

0.1

3
= 0.0333
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Since 1 − α = 0.9, α = 0.1, thus α/2 = 0.05. Looking at the Z table, we have to choose
between a probability of 0.0495 (zα/2 = 1.65) and a probability of 0.0505 (zα/2 = 1.64). We
will choose zα/2 = 1.65 to allow for more “wiggle room”. Thus our 90% confidence interval
for µ is given by:

[ȲL, ȲU ] = [Ȳ − zα/2σȲ , Ȳ + zα/2σȲ ]

= [Ȳ − (1.65)(0.0333), Ȳ + (1.65)(0.0333)]

= [10.0− (1.65)(0.0333), 10.0 + (1.65)(0.0333)]

= [9.945, 10.055]

Although we cannot say for certain that the true population parameter µ falls within this
range, we can say that the probability that it does is 0.90. If we repeated this procedure,
i.e. took 9 more samples, generated the sample mean, and constructed a 90% confidence
interval, we would get a different confidence interval, but the probability that µ would fall
in that confidence interval would still be 0.90.

Note that constructing this confidence interval required knowledge of the population standard
deviation (which we then divided by n to get the standard deviation of the estimator). Often
we do not know this parameter, but we wish to construct a confidence interval anyway. What
to we do in that case? We use the sample standard deviation (found, for example, using
the estimator S) in place of the population standard deviation. If this sounds to you like
cheating, you are right! The key is that n is large. If the population is large, the sample
standard deviation is close to the population standard deviation and there is very little loss
of accuracy if we use S in place of σ in the formula for the confidence interval. We will justify
this approximation mathematically later on, but for now just recall that the t distribution
(which we use when the population standard deviation is unknown) approaches the standard
normal Z distribution as the number of degrees of freedom increases.

Example. The shopping times of n = 64 randomly selected customers at a local super-
market were recorded. The sample mean and sample variance of the 64 shoppers were 33
minutes and 256 minutes, respectively. Find a 98% confidence interval for µ, the true average
shopping time per customer.

In this case, the parameter of interest is µ. Our estimator is Ȳ , the sample mean. In this
experiment, we sampled n = 64 customers and found a sample mean Ȳ = 33 and a sample
variance S2 = 256. Since the sample is large (more than 30 customers), by the central limit
theorem, we can assume that Ȳ is normally distributed. We do not know the population
variance, so we will use the sample variance in place of the population variance. Since the
population is large, this is a reasonable assumption. Thus we can use the formula above for
the confidence interval, where for the standard deviation of the estimator we use:

σȲ =
S√
n

=

√
256√
64

=
16

8
= 2

To find zα/2, we look at our Z table. Since (1 − α) = 0.98, α = 0.02, thus α/2 = 0.01.
Looking at our Z table, the closest probability we have to 0.01 is 0.0099 (0.0102 is the next
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closest, but since it is farther away, we will use 0.099), and the value of Z corresponding to
that gives us zα/2 = 2.33. We now have everything we need to construct our 98% confidence
interval.

[ȲL, ȲU ] = [Ȳ − zα/2σȲ , Ȳ + zα/2σȲ ]

= [33− (2.33)(2), Ȳ + (2.33)(2)]

= [28.34, 37.66]

Here is another example, this time dealing with the difference between sample proportions.

Example. Two brands of lightbulbs, denoted brand A and brand B, are guaranteed to last
for at least 1 year. In a random sample of 50 lightbulbs of brand A, 12 were found to fail
before the 1 year period ended. In an independent random sample of 60 lightbulbs of brand
B, 12 were also found to fail before the 1 year period ended. Give a 98% confidence interval
for the difference p1 − p2 between the proportion of failures of the two brands during the 1
year period.

The parameter of interest here is p1−p2, and we use as our estimator p̂1− p̂2. Evaluating our
estimators, we get p̂1 = 12/50 = 0.24 and p̂2 = 12/16 = 0.20, thus p̂1 − p̂2 = 0.24 − 0.20 =
0.04. To construct our confidence interval, we need the standard deviation of our estimator.
From the table above (or by deriving it from the variance of the binomial distribution), we
have

σp̂1−p̂2 =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

But we have a problem. The standard deviation involves the true parameter p, and that
is what we are trying to estimate! No worries, we will just do what we did before. Since
the population is large, we will use the estimator p̂ in place of p in the expression for the
standard deviation.

σp̂1−p̂2 ≈

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

=

√
(0.24)(0.76)

50
+

(0.20)(0.80)

60
= 0.0795

We found zα/2 for a 98% confidence interval in the previous example, thus we have zα/2 =
2.33. Using the formula, our 98% confidence interval is:

[(p̂1 − p̂2)− zα/2σp̂1−p̂2 , (p̂1 − p̂2) + zα/2σp̂1−p̂2 ] = [0.04− (2.33)(0.0795), 0.04 + (2.33)(0.0795)]

= [0.04− 0.185, 0.04 + 0.185]

= [−0.145, 0.225]

Note that our 98% confidence overlaps 0. If the true parameter p1 − p2 were 0, then there
would be no difference in the 1-year failure rates of the two brands of lightbulbs! Thus we
cannot exclude that possibility with 98% confidence.
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6.3.2 Experimental Design: Selecting the Sample Size

If you are designing an experiment, one of the parameters you must choose is the sample
size. As an example, suppose you are polling registered voters in Rhode Island and asking
them if they are voting for Gina Raimondo. You use the estimator p̂ for p, the true pro-
portion of Raimondo voters. As the number n of people polled (the size of your sample)
increases, the variance of your estimator p̂ decreases, and there is a higher probability that
your estimator will be close to the true proportion. In terms of confidence intervals, if you
desire 95% confidence that your interval contains the true parameter p, as you increase the
sample size, the confidence interval becomes narrower. There is a tradeoff, however, as the
sample size gets larger. Collecting a larger sample is more expensive and consumes more
resources. Is there any way mathematically to determine ahead of time the sample size we
need to attain a desired level of accuracy for our estimator?

Suppose we want to estimate the average diameter µ of a ball bearing produced by a ball
bearing machine, and we wish the probability that our estimate is within 0.02 mm of the
true mean to be 0.95. Assuming the diameters of the ball bearings are normally distributed
(or taking a large enough sample that the central limit theorem applies), by the 68-95-99.7
rule we want the true value µ to be within 2 standard deviations of our estimator Ȳ (This
is the standard deviation of the estimator, not the population standard deviation). Thus we
want:

2σȲ = 2
σ√
n

= 0.02

We can solve the above equation for n as long as we know σ.

n =

(
2σ

0.02

)2

What do we do if the population standard deviation σ is not know, as is often the case.
One possibility is to use the sample standard deviation S from a previously taken sample
in place of the population standard deviation σ. As long as we take a large enough sample,
this is a reasonable estimate. Another alternative is to use the range (largest value minus
smallest value) of a previous sample. If we assume that the population is roughly normally
distributed, then we know from the 68-95-99.7 rule that 95% of the population will lie within
two standard deviations of the mean. If our sample is large enough, then the sample range
should be approximately 4σ, since we are assuming the range represents two standard devia-
tions both above and below the mean. Thus we can approximate σ as one-fourth of the range.

In our ball bearing example, suppose in a previous sample of 50 ball bearings we had a range
of 0.4 mm. Dividing this by 4, we can estimate σ = 0.4/4 = 0.1. Plugging this info our
formula above, we get:

n =

(
2 · 0.1
0.02

)2

= 102 = 100
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6.4 Small Sample Confidence Intervals for Population Mean

In this section we will discuss confidence intervals for the estimators of population means µ
and µ1−µ2. The confidence interval estimators in the previous section relied on the fact that
the sample size was large. We used the large sample size assumption in two places. First, if
the underlying sample size is not normal, we need a large sample size to apply the central
limit theorem and conclude that the sample mean estimator Ȳ is approximately normal.
Second, the confidence interval formula relies on the standard deviation of the estimator,
and the formula for that standard deviation involves the population standard deviation.
This population standard deviation is usually unknown, so we estimate it with the sample
standard deviation S. This approximation is only valid for a large sample size. What do we
do when the sample size is small?

We will assume in this section that the population is normally distributed, since the sample
size will be too small for the central limit theorem to apply. Let Y1, . . . , Yn be n samples from
a normal population, and let Ȳ and S2 be the sample mean and variance. We would like to
construct a confidence interval for the population mean µ in the case where the population
variance σ2 is unknown and the sample is too small to approximate σ2 with S2. Recall from
the chapter on sampling distributions that

T =
Ȳ − µ
S/
√
n

has a t-distribution with (n− 1) degrees of freedom. We will construct a confidence interval
in the same method as for large sample sizes, but we will use the t-distribution in place of
the standard normal distribution.

α/2 α/2

1-α

-t
α/2

t
α/2

As with the confidence interval involving the Z distribution, given a confidence coefficient
(1 − α), we will look for a two-sided confidence interval by dividing α by 2 and looking for
values −tα/2 and tα/2 such that

P(−tα/2 ≤ T ≤ tα/2) = 1− α

The value tα/2 can be found from the t-table with (n−1) df. The confidence interval formula
is derived in exactly the same was as the large sample case, and the only differences between

13



the formulas is that the population standard deviation σ is replaced by the sample standard
deviation S and the Z value is replaced by a t value.

[ȲL, ȲU ] =

[
Ȳ − tα/2

S√
n
, Ȳ + tα/2

S√
n

]
Since the t distribution has thicker tails than the normal distribution, confidence intervals
involving small sample sizes which use the t distribution will be wider than those using the
Z distribution.

Example. You are a rocket scientist, and you conduct an experiment which involves mea-
suring the launch velocity of a model rocket. Suppose 8 measurements are taken. The sample
mean is 29.59 m/s, and the sample standard deviation is 0.391 m/s. Find a 95% confidence
interval for the true launch velocity of the model rocket.

We will assume that the launch velocities are normally distributed. Since we have a small
sample size, we have to use the t distribution to construct our confidence interval. Since there
are 8 observations, we want the t distribution with 7 df. Since (1− α) = 0.95, α/2 = 0.025.
From the t-table, we find that tα/2 = t0.025 = 2.365. Thus our 95% confidence interval is

[ȲL, ȲU ] =

[
29.59− (2.365)

0.391√
8
, 25.959 + (2.365)

0.391√
8

]
= [29.59− 0.327, 29.59 + 0.327]

We can similarly handle the case where we want to compare the means of two normal popula-
tions. If the sample sizes are large and we know the standard deviations of both populations,
we can use the confidence interval methods described in the previous section. If the standard
deviations are not know, we will again rely on the t distribution. In this case, the algebra is
a lot more messy. I think the result is interesting and useful, so I am presenting it here. It
is complicated enough that I will not put it on an exam.

Suppose we want to compare the means µ1 and µ2 of two populations. We will assume that
they have the same variance σ2, but that this variance is unknown. (This assumption is
important for this model.) Take a sample of size n1 from the first population and a sample
of size n2 from the second population. Compute the sample means Ȳ1 and Ȳ2, and construct
the estimator Ȳ1 − Ȳ2. We would like to construct a confidence interval for this estimator.
First, we compute the sample variance S2

1 for the first sample and the sample variance S2
2 for

the second sample. An unbiased estimator for the population variance σ2 can be obtained
by pooling the sample data from both samples to obtain the pooled variance estimator S2

p :

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

This estimator is a weighted average of S2
1 and S2

2 , with the larger sample being given a
higher weight. The weights (n1 − 1) and (n2 − 1) are used in place of n1 and n2 so that this
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is an unbiased estimator (similar to the factor of n − 1 in the denominator for the sample
variance estimator S2). We can show that the quantity

T =
(Ȳ1 − Ȳ2)− (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

has a t distribution with n1 + n2 − 2 degrees of freedom (df). Thus, in a similar fashion to
the confidence intervals we constructed earlier, the confidence interval for (µ1 − µ2) is given
by: [

(Ȳ1 − Ȳ2)− tα/2Sp
√

1

n1

+
1

n2

, (Ȳ1 − Ȳ2) + tα/2Sp

√
1

n1

+
1

n2

]
6.5 Consistency

We talked in previous sections about desirable properties for estimators. Ideally, we would
like our estimators to be unbiased. However, we showed in a homework problem that in cer-
tain circumstances, a biased estimator may in fact have lower mean square error (MSE) than
an unbiased estimator, so bias is not the entire story. Mean square error, which is the sum
of bias squared and variance, is a good measure of the accuracy of an estimator, but it does
not take into account the size of the sample we are taking. Ideally, we would like to define
an estimator as “good” if the probability of “missing” the true parameter value goes to 0
as the sample size gets large. This concept of “goodness” of an estimator is called consistency.

We use the same setup as always. Consider a population which can be characterized by a
parameter θ. Take n samples Y1, . . . , Yn from the population, and construct from these an
estimator θ̂n for θ. Note the subscript n indicates that we have a different estimator for each
value of n. For example, if we want to estimate the population mean µ, then we can use the
sample mean as an estimator. Writing the sample mean with a subscript n to denote the
number of samples we are taking from our population, we have our estimator for µ:

Ȳn =
1

n

n∑
i=1

Yi

An estimator θ̂n is consistent for θ if the probability that θ̂n misses the true parameter by
even a small amount approaches 0 as n approaches infinity. Mathematically we write this as
follows.

Consistency Estimator

Let θ̂n be an estimator for a parameter θ, where θ̂n is obtained from a sample of size n
from the underlying population. The estimator θ̂n is consistent for θ if for all ε > 0 (no
matter how small),

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

This type of convergence is called convergence in probability.
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Like many criteria in mathematics, this is difficult to check. In the case of an unbiased
estimator, we have an equivalent characterization of consistency which is much easier to
verify. This is one of the reasons we like unbiased estimators, even though we have seen that
unbiased estimators are not always “better”.

Consistency of an Unbiased Estimator

Let θ̂n be an unbiased estimator for a parameter θ, where θ̂n is obtained from a sample
of size n from the underlying population. Then θ̂n is consistent for θ if

lim
n→∞

V ar(θ̂n) = 0

To see that this is true, we can use Chebyshev’s Inequality. For ε > 0, Chebyshev’s Inequality
gives us

P(|θ̂n − E(θ)| ≥ ε) ≤ V ar(θ̂n)

ε2

Since θ̂n is unbiased (this is critical here), we know E(θ) = θ, so we can substitute θ for E[θ)
above to get:

P(|θ̂n − θ| ≥ ε) ≤ V ar(θ̂n)

ε2

Taking the limit of both sides,

lim
n→∞

P(|θ̂n − θ| ≥ ε) ≤ 1

ε2
lim
n→∞

V ar(θ̂n) = 0

since we are assuming that the variance of our estimator goes to 0 as n goes to infinity.

We can apply this to see that the sample mean Ȳ is a consistent estimator for the population
mean µ. Recall that the sample mean is given by:

Ȳn =
1

n

n∑
i=1

Yi

We have shown that this is unbiased, i.e. EȲn = µ. We also know from the section on
sampling distributions that V ar(Ȳn) = σ2/n, which goes to 0 as n goes to infinity. Thus
Ȳn is a consistent estimator for µ. This result is known as the Weak Law of Large Num-
bers, and is one of the fundamental results of probability. Recall from the beginning of the
course that when we defined expected value, we said that we could think of it intuitively
as taking the average of a large number of experiments. In other words, the expected value
is approximately what we get if we repeat an experiment n times, add up the results, and
divide by n. The law of large numbers makes this intuition mathematically precise. Ȳn is the
empirical mean, i.e. what we get when we “add-them-up-and-divide-by-n”. As n gets large,
Ȳn approaches the true expected value µ in the sense that the probability that Ȳn “misses”
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µ becomes arbitrarily small.

We can similarly show that our unbiased estimator for variance S2 (which we can write S2
n

to indicate the sample size of n) is a consistent estimator for the population variance.

6.6 Construction of Estimators

So far we have defined what an estimator is and discussed qualities we would like to have in
our estimators (unbiased, low MSE, consistent). But we have only discussed three estimators:
Ȳ , S2, and p̂. There are many more parameters we might like to estimate. How can we
construct estimators for them? In this section we look at two methods of constructing
estimators: the method of moments and the maximum likelihood estimator (MLE).

6.6.1 Method of Moments

This method is based on the fact that the sample mean Ȳ is a consistent estimator for the
population mean µ. A population parameter is often a function of the population mean.
For example, if we have a population which has a Poisson distribution, then the Poisson
parameter λ is equal to the population mean µ. Thus we can estimate λ by the sample mean
Ȳ , i.e. λ̂ = Ȳ is an estimator for the Poisson parameter λ.

In its most simple form, the method of moments works as follows:

1. Write the parameter of interest in terms of the population mean, i.e. solve for the
parameter in terms of the population mean µ.

2. Substitute Ȳ for µ to get the method of moments estimator.

Let’s do some examples.

Example. Suppose we have a population which has a uniform distribution on the interval
[0, b]. Find the method of moments estimator for b.

The population mean µ is the expected value of a uniform random variable, so µ = b−0
2

= b
2
.

Solving for b we get b = 2µ. Substituting Ȳ for µ we get b = 2Ȳ . Thus our method of
moments estimator for b is:

b̂ = 2Ȳ

Since E(Ȳ ) = µ, b̂ is an unbiased estimator for b. What is its variance?

V ar(b̂) = V ar(2Ȳ )

= 4V ar(Ȳ )

= 4
σ2

n

= 4
b2

12n

=
b2

3n
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where we used both the variance of Ȳ and the variance of the uniform distribution on [0, b].
Since there is a factor of n in the denominator, the variance of b̂ goes to 0 as n goes to
infinity, thus the method of moments estimator is a consistent estimator for b.

Example. Suppose we have a population which has a geometric distribution with parameter
p. Find the method of moments estimator for p.

The population mean µ is the expected value of a geometric random variable, so µ = 1/p.
Solving for p, we get p = 1/µ. For the method of moments, we substitute Ȳ for µ, thus the
method of moments estimator is:

p̂ =
1

Ȳ
Example. Suppose we have a population which has a Poisson distribution with parameter
λ. Find the method of moments estimator for λ.

Since the population mean is µ = λ, the method of moments estimator is λ̂ = Ȳ .

Sometimes we cannot construct an method of moments estimator in this way, i.e. we cannot
solve for the parameter in terms of the population mean µ. For example, suppose the
population is uniformly distributed on [a, b], and we want to estimate both a and b. The
population mean is µ = a+b

2
, but we cannot solve for either a or b in terms of µ without having

an expression in terms of the other parameter. The idea here is to estimate the variance
using the method of moments, and then we have two equations for the two unknowns a and
b. Since the algebra gets messy really quickly, we will not be pursuing this any further. All
method of moments estimators we will use will only involve the sample mean Ȳ .

6.6.2 Maximum Likelihood Estimator (MLE)

The method of moments is very intuitive but often does not lead to the best estimators. A
second way of constructing estimators is called the maximum likelihood estimator (MLE).
Let’s look an an example to illustrate how the MLE works.

Example. You have a bag which contains three marbles. You know they are either red or
white, but you do not know how many of each are in the bag. For some reason, you are
forbidden from opening the bag and looking at the marbles. However, you are permitted to
sample two marbles without replacement. Suppose we draw out two red balls. What is a
good estimate of the number of red balls in the bag?

Since we drew two red balls, the bag either contains two red balls or three red balls. If the
bag contains two red balls, then the probability of our draw is:(

2
2

)(
1
0

)(
3
2

) =
1

3

If the bag contains three red balls, then the probability of our draw is:(
3
2

)(
3
2

) = 1
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A reasonable estimate for the number of red balls in the bag is 3, since that maximizes the
probability of our draw.

The method illustrated in the example above is known as the method of maximum likelihood,
since we choose the parameter which maximizes the probability of attaining our sample. Be-
fore we give the formal definition and more examples, we need to formally define the concept
of likelihood.

Suppose we have a population whose distribution can be characterized by a parameter θ.
The pmf or density function for the population will depend on θ, so the parameter θ will
appear in the formula for the pmf or density function. We will indicate this dependence on
θ as a subscript θ. Let pθ(y) or fθ(y) be the pmf or density function for our population.
Now take a sample of size n, denoted Y1, Y2, . . . , Yn, from our population. Then we define
the likelihood of our sample as follows.

Likelihood of a Sample

Let Y1, Y2, . . . , Yn be a sample drawn from a population with pmf or density pθ(y) or
fθ(y). Then the likelihood of the sample is given by:

L(Y1, Y2, . . . , Yn|θ) = pθ(Y1)pθ(Y2) · · · pθ(Yn) discrete distribution

L(Y1, Y2, . . . , Yn|θ) = fθ(Y1)fθ(Y2) · · · fθ(Yn) continuous distribution

In other words, we plug the samples into the pmf or density and multiply them together.

The maximum likelihood estimator (MLE) chooses the value of the parameter θ which max-
imizes the likelihood of our sample.

Maximum Likelihood Estimator

Let Y1, Y2, . . . , Yn be a sample drawn from a population parameterized by θ, and let
L(Y1, Y2, . . . , Yn|θ) be the likelihood of the sample. Then the maximum likelihood esti-
mator (MLE) for θ, which is sometimes written θ̂MLE, is the value of θ which maximizes
the likelihood L(Y1, Y2, . . . , Yn|θ).

Let’s do some examples of this. We will redo the three examples from the method of moments
section.

Example. Suppose we have a population which has a uniform distribution on the interval
[0, b]. Take a sample Y1, . . . , Yn from this distribution. Find the MLE for b.

First we need to find the likelihood function L(Y1, . . . , Yn|b). The density function for a
uniform distribution on [0, b] is

fθ(y) =

{
1
b

0 ≤ y ≤ b

0 otherwise
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Thus the likelihood function is

L(Y1, Y2, . . . , Yn|θ) = fθ(Y1)fθ(Y2) · · · fθ(Yn)

=

{
1
bn

if 0 ≤ Yi ≤ b for all samples Yi

0 otherwise, i.e. if for any sample Yi > b or Yi < 0

The MLE is the value of b which maximizes this likelihood function. We do not want the
likelihood to be 0, since that cannot be a maximum, thus we need to have 0 ≤ Yi ≤ b
for all samples Yi. Since b is in the denominator in our expression above, to maximize the
likelihood we want to make b as small as possible without causing the likelihood to be 0.
In other words, we want the narrowest interval for the uniform distribution that we can get
away with, i.e. the smallest value for b for which the interval can contain our sample points.
How do we do this? If we choose b to be the largest of our sample points, we have maximized
our likelihood! In other words, our MLE estimator is the largest order statistic of our data:

b̂MLE = max(Y1, Y2, . . . , Yn) = Y(n)

This is very different from our method of moments estimator above. Is this estimator un-
biased? The expected value of this estimator is a little tricky to compute, but we can do it
if we think in terms of CDFs. Let Y ∼ Uniform[0, b], and let F (y) be the CDF of Y , i.e.
F (y) = P(Y ≤ y). Let Y(n) = max(Y1, Y2, . . . , Yn), and let F(n) be the CDF for Y(n). Then

F(n)(y) = P(Y(n) ≤ y)

= P(max(Y1, Y2, . . . , Yn) ≤ y)

= P(Yi ≤ y for all i = 1, . . . , n)

= F (Y1)F (Y2) . . . F (Yn)

We can get the CDF of Y by integrating the uniform density:

F (y) =


0 y < 0
y
b

0 ≤ y ≤ b

1 y > 1

Thus as long as all the samples are in the interval [0, b] we have

F(n)(y) =
(y
b

)n
To get the density f(n) of Y(n) we take the derivative of the CDF with respect to y.

f(n)(y) =
d

dy
F(n)(y)

= nyn−1 1

bn

The density is 0 outside the interval [0, b], so with the appropriate limits the density becomes

f(n)(y) =

{
nyn−1 1

bn
0 ≤ y ≤ b

0 otherwise
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So to get the expected value of Y(n) we use the formula for the expected value of a continuous
random variable.

E(Y(n)) =

∫ b

0

yf(n)(y)dy

=

∫ y

0

ynyn−1 1

bn

=
n

bn

∫ b

0

yndy

=
n

bn
yn+1

n+ 1

∣∣∣b
0

=
n

bn
bn+1

n+ 1

=
n

n+ 1
b

Since this is not equal to b, the MLE is a biased estimator for the parameter b. However, we
can convert this to an unbiased estimator by multiplying it by (n+1)/n. Thus the estimator

n+ 1

n
Y(n) =

n

n+ 1
max(Y1, Y2, . . . , Yn)

is an unbiased estimator for b.

Example. Suppose we have a population which has a geometric distribution with parameter
p. Take samples Y1, . . . , Yn from this distribution. Find the MLE for p.
Recall that the pmf for the geometric distribution with parameter p is:

p(k) = P(Y = k) = (1− p)k−1p

Then our likelihood function is:

L(Y1, . . . , Yn|p) =
n∏
i=1

(1− p)Yi−1p

To maximize this, we need to use calculus. We will differentiate with respect to p and set
the derivative equal to zero. Since this requires an annoying amount of algebra, we will use
a trick. Since the log function is strictly increasing, the log of the likelihood function and
the likelihood function attain their maximum at the same value of p. So we can find the
maximum of the log likelihood function instead, and this will give us the correct maximum
for p.

logL(Y1, . . . , Yn|p) = log
n∏
i=1

(1− p)Yi−1p

=
n∑
i=1

log p+
n∑
i=1

log(1− p)Yi−1

= n log p+
n∑
i=1

(Yi − 1) log(1− p)
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Taking the derivative with respect to p:

d

dp
logL(Y1, ..., Yn|p) =

n

p
− 1

1− p

(
n∑
i=1

Yi − n

)
For this to be 0 we require:

1

1− p

(
n∑
i=1

Yi − n

)
=
n

p

p

(
n∑
i=1

Yi − n

)
= n(1− p)

p

n∑
i=1

Yi − np = n− np

p =
n∑n
i=1 Yi

=
1

Ȳ

Thus the MLE for the parameter p is 1/Ȳ . This is the same estimator as we found by the
method of moments above.

Example. Suppose we have a population which has a Poisson distribution with parameter
λ. Take samples Y1, . . . , Yn from this distribution. Find the MLE for λ.

Using the Poisson pmf, The likelihood function is:

L(Y1, . . . , Yn|λ) =
n∏
i=1

e−λλYi

Yi!

= e−nλλ
∑n

i=1 Yi

n∏
i=1

1

Yi!

= e−nλλnȲ
n∏
i=1

1

Yi!

To maximize this with respect to λ, we will maximize the log likelihood function.

logL(Y1, . . . , Yn|λ) = log(e−nλ) + log(λnȲ ) + log

(
n∏
i=1

1

Yi!

)

= −nλ+ nȲ log(λ) + log

(
n∏
i=1

1

Yi!

)
Taking the derivative with respect to λ:

d

dλ
logL(Y1, . . . , Yn|λ) = −n+

nȲ

λ

Setting this equal to 0, we get λ = Ȳ , which is the same estimator we got using the method
of moments.

22


	Estimation
	Introduction
	Point Estimators
	Interval Estimators
	Confidence Intervals for Large Sample Sizes
	Experimental Design: Selecting the Sample Size

	Small Sample Confidence Intervals for Population Mean
	Consistency
	Construction of Estimators
	Method of Moments
	Maximum Likelihood Estimator (MLE)



