
1 Probability Essentials

In general parlance, the term probability is used as a measure of a person’s belief in the
occurrence of an event. This is the subjective notion of probability. Take a sentence such as,
“There is a 60% probability of rain tomorrow”. Where did this come from? A professional
meteorologist has used a sophisticated mathematical model to distill large amounts of at-
mospheric data down to a simple number indicating her belief that it is more likely to rain
than to not rain tomorrow. We can interpret this number however we wish. We should be
careful, however, to examine both our biases and those of the meteorologist. Who does this
meteorologist work for? How reliable have their predictions been in the past? (We should
be careful here since we might be more likely to recall rain when none was predicted than
the other way around.) Are meteorologists more likely to err on the side of predicting rain,
since that way fewer people will be upset if they are wrong? We can use this number to
make important life decisions such as whether or not to carry an umbrella. The downside of
this is that it is in essence a subjective opinion, even if that opinion comes from an expert.
In addition, for subjective probabilities to make sense, they have to be internally consistent.
In this example, if we believe there is a 60% chance of rain tomorrow, we must also believe
that there is a 40% chance of it not raining tomorrow.

Let’s look at a di↵erent example. What is the probability of rolling a 1 on a standard six-
sided die? We can argue based on symmetry that since dice are cubical, there should be
no reason for one face to be preferred over another. Thus this probability is 1/6. This is
the classical notion of probability. In this interpretation, we use symmetry arguments to di-
vide our experiment (a single die roll, in this case) into elementary events which are equally
probable (the six distinct die rolls). We can compute the probability of any event using
these elementary, equiprobable events. The limitation of this approach is that is requires
a symmetry argument to be e↵ective; thus it works for coin flips and die rolls, but not for
more complicated scenarios.

We can look at the die roll experiment in another way. Imaging rolling a standard six-sided
die repeatedly. The empirical probability of rolling a 1 is the ratio of the number of times a
1 is rolled to the total number of rolls. In general, we have:

empirical probability of a certain event =
number of times the event occurs

total number of trials

Intuitively, as we perform more and more dice rolls, the empirical probability of rolling a
1 should approach some mythical quantity which we call the true probability of rolling a
1. This approach is the empirical, or frequentist, approach to probability. For a standard,
six-sided die, it stands to reason that the empirical probability should approach the classical
probability of 1/6 as the number of rolls approaches infinity. This result is called the law of

large numbers and will be discussed later in the course. The empirical approach has a critical
advantage over the classical approach in that we do not require symmetry to compute our
probabilities. As an example of this, think of how you would determine the probability of
rolling a 1 if someone handed you a loaded die. The empirical approach does, however, have
its limits. Returning to the weather example, there is no way to think of the chance of rain

1



tomorrow as the limit of a sequence of independent experiments. Unless we are in the movie
Groundhog Day, tomorrow can only happen once!

For our purposes, we require a more rigorous, mathematical construction of probability. This
is known as axiomatic probability and will unify some of the aspects of the other approaches
to probability. For this, we turn to the language of set theory.

1.1 Sample Spaces

A set is a collection of distinct objects. A sample space, denoted S is the set of all outcomes
of a particular experiment. Here are some examples of sample spaces:

1. Single coin flip: S = {H, T}

2. Roll of one standard, six-sided die: S = {1, 2, 3, 4, 5, 6}

3. Roll of two standard, six-sided dice: Here we represent the sample spaces as ordered
pairs.

second roll
1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

first roll 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

4. Number of free throw attempts it takes for me to make a single basket: S = {1, 2, 3, ...}.
This set is often denoted N for the natural numbers (positive integers)

5. Number of minutes late my RIPTA bus arrives: S = [0,1).

Note that the first three sample spaces contain only a finite number of elements (2, 6, and 36
elements, respectively). These are called finite sample spaces. The fourth and fifth sample
spaces both contain an infinite number of elements, but there is a fundamental di↵erence
between the two. The set N can be written out in its entirety in an infinitely long list;
another way to think about this is that we can start at 1 and count up to any number in the
set (as long as we have enough time!). A set with this property is called countable. For the
set [0,1), it makes intuitive sense that we cannot do this, i.e. we cannot list all the elements
and, say, “count up to ⇡”. A proof of this fact is left for another course. Such an infinite
set is called uncountable

1. A sample space which is either finite or countable is called discrete.

1An uncountable set is a “larger infinity” than a countable set, which leads to the concept of “sizes of
infinity”. John Green alludes to this in his novel The Fault in Our Stars, but unfortunately gets the math
wrong. If you find this interesting, I recommend the Vi Hart video https://www.youtube.com/watch?v=

23I5GS4JiDg
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1.2 Events and Subsets

An event is a subset of a sample space. Events are usually designated by capital letters, and
we write the relationship “A is a subset of S” by A ⇢ S. For two events A and B, A ⇢ B
if every element in A is also contained in B. The empty set, denoted ;, is the set containing
no elements, and it is a subset of every set.

Let us consider the sample space S = {1, 2, 3, 4, 5, 6}, representing the roll of a single die.
The following are examples of events:

1. A = {2, 4, 6}, the event that an even number is rolled

2. B = {1, 2, 3}, the event that the roll is less than or equal to 3

3. C = {1}, the event that a 1 is rolled

The event C consists of a single element in the sample space. Such an event is called a simple

event and cannot be decomposed. The events A and B are each composed of three simple
events.

Next, consider the sample space representing rolls of two dice. Let E be the event that the
sum of the two dice is 7. We can represent this event graphically; in the figure below, the
event E consists of the squares which are highlighted in yellow.

second roll
1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

first roll 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

1.3 Basic Set Operations

“You have multiple core competencies with surprisingly minimal Venn. You
can pivot from working on astrophysics problems, to teaching the young Arkers,
to podcasting to folks on the ground, without skipping a beat!” - Neal Stephen-
son, Seveneves

Let S be our sample space, the set of all elements under consideration. Consider two events
A and B which are subsets of S. We have the following three basic set operations, which
are handily illustrated using Venn diagrams.

1. The union of A and B, denoted A [ B, is the set of all elements which are in A or B
(or both). That is, the union is all elements that are in at least one of the two sets.
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S

A B

2. The intersection of A and B, denoted A \ B, is the set of all elements which are in
both A and B.

S

A B

Two sets A and B are disjoint or mutually exclusive if they have no elements in
common, i.e. if A \ B = ;.

S

A B

3. The complement of A, denoted Ac, is the set of all points in S which are not in A.
Note that A and Ac are disjoint, and A [ Ac = S.
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S

A

There are many relationships between these operations which fall under the rubric of set
algebra. Most of them we will not need, but we mention a few useful ones here:

1. Distributive laws

A \ (B [ C) = (A \ B) [ (A \ C)

A [ (B \ C) = (A [ B) \ (A [ C)

2. DeMorgan’s laws

(A \ B)c = Ac [ Bc (the complement of an intersection is the union of the complements)

(A [ B)c = Ac \ Bc (the complement of a union is the intersection of the complements)

1.4 Axiomatic Definition of Probability

Equipped with our our knowledge of set theory, we can define probability axiomatically as
follows. Given any event A in our sample space S, we assign a probability P(A) to that
event such that the following rules hold2:

1. 0  P(A)  1

The probability of an event is a real number between 0 and 1, where a probability of
0 means that the event will never occur, and a probability of 1 means that the event
will always occur.

2. P(;) = 0

The probability that nothing happens is 0, i.e. something must happen.

2You can construct a coherent notion of probability with fewer axioms and derive the remaining rules
from these; I like this version of probability rules, since it codifies what we want to be true given our intuitive
notion of probability.
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3. P(S) = 1

The probability of the whole sample space is 1, which is another way of saying that
something must happen.

4. If A ⇢ B, then P(A)  P(B)

If we make a set bigger, its probability can only increase (or stay the same); it cannot
decrease.

5. If A1, A2, . . . , An are pairwise disjoint events, i.e. Ai \ Aj = ; if i 6= j, then

P(A1 [ A2 [ · · · [ An) =
nX

i=1

P(Ai)

This holds for an infinite sequence as well, i.e. if A1, A2, A3, . . . are a sequence of
pairwise disjoint events, then

P(A1 [ A2 [ A3 [ · · · ) =
1X

i=1

P(Ai)

From these we can derive a very important rule:

P(A) + P(Ac) = 1, i.e. P(A) = 1� P(Ac)

Sometimes it is easier to calculate the probability of an event not happening than the prob-
ability of the event itself!

These rules tell us the properties that we want probability to have. However, given a sample
space, they do not actually tell us how to assign probabilities to each event in the sample
space. Doing that in a way that is consistent with the above rules can be a bit tricky 3, but
luckily for a discrete sample space we can do this with no problem. Since a discrete sample
space is composed of a finite (or countable) number of simple events, all we have to do is
assign probabilities to each simple event in such a way that they all add up to 1.

Example. Consider once again tossing a single die. The sample space for this is S =
{1, 2, 3, 4, 5, 6}. This sample space contains 6 simple events: {1}, {2}, {3}, {4}, {5}, and {6}.
We can assign any probabilities we want to these simple events, as long as they add up to
1. For example, assuming we have a fair die, we can let P({i}) = 1/6 for i = 1, . . . , 6. If we
like, we can check that all the above rules hold. If we have a loaded die, which rolls a 6, say,
half the time, we could assign probabilities: P({6}) = 1/2,P({i}) = 1/10 for i = 1, . . . , 5.

3In fact, for an uncountable sample space such as S = [0, 1], you can show that you cannot construct a
notion of probability which is consistent with all the rules; this is the starting point for the development of
measure theory, and is beyond the scope of this course.
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Example. Consider this time a countable sample space S = N = {1, 2, 3, . . . }. One possibil-
ity is to assign probabilities P({i}) = 1/2i for i = 1, 2, 3, . . . , i.e. P({1}) = 1/2, P({2}) = 1/4,
P({3}) = 1/8, etc. Perhaps you recall from calculus that this is a geometric series with first
element 1/2 and common ratio 1/2, and so we know its sum is:

1X

i=1

P({i}) =
1X

i=1

1

2i
=

1

2

1

1� 1/2
= 1

Since the sum of the probabilities of all the simple events is 1, we are all set! If you have not
seen this before, we will cover this in more detail when we discuss the geometric distribution.
In the meantime, here is a nice picture to convince you that the sum is indeed 1.

1.5 Discrete Uniform Distribution

The first probability distribution we will consider is the uniform distribution on a finite sam-
ple space. In the discrete uniform distribution, every simple event is equally likely to occur.

Suppose we have a finite sample space S with n simple events. The discrete uniform distri-
bution assigns each simple event a probability of 1/n. Why is this the case? If each simple
event has probability p and there are n simple events A1, . . . An in our sample space, then
using the fact that the sample space S must have probability 1 and that the simple events
are pairwise disjoint:

1 = P(S)
= P(A1 [ A2 [ · · · [ An)

= P(A1) + P(A2) + · · ·+ P(An)

= np

where in the last line we use the fact that the simple events each have probability p, and
there are n of them. Solving for p, we get p = 1/n.

How do we find the probability of an event that is not a simple event? Again, consider a
discrete sample space S with n simple events. Suppose we have an event A which is a subset
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of S. Since we have a finite sample space, A is composed of a finite number m of simple
events, where m is an integer between 0 and n. The probability of A is:

P(A) = number of simple events in A

number of simple events in S =
m

n

Example. Consider the finite sample space S representing the roll of two standard dice.
This sample space has 36 simple events, so each simple event has a probability of 1/36. Note
that for the simple events in this sample space, the order of the die rolls matters. (1, 6) and
(6, 1) are two di↵erent events; even though both events contain the same die rolls, for the
former, the 1 is rolled first, while for the latter, the 6 is rolled first.

1. What is the probability that the sum of the two dice is 7? Looking at the graphical
depiction of this event above, we see that there are 6 simple events that give us a sum
of 7. Thus the probability of a sum of 7 is 6/36 = 1/6.

2. What is the probability that the sum of the two dice is less than 11. In this case, it
is easier to compute the probability that the sum is 11 or greater and then subtract
that probability from 1. (Why can we do this?) Let A be the event that the sum is 11
or greater. A is composed of 3 simple events: (6, 6), (6, 5), and (5, 6). Thus we have
P(A) = 3/36. The probability we want is:

P(Ac) = 1� P(A) = 1� 3/36 = 33/36

In the previous example, it is relatively straightforward to draw the sample space, so we can
essentially compute any probability we want simply by looking at the picture and counting
which boxes comprise our event of interest. For more complicated problems, this is not as
easy. Consider the following example:

Example. A communication system consists of n antennas arranged in a line. Exactly m
out of the n antennas are defective. The system is functional if no two consecutive antennas
are defective. Assuming that each linear arrangement of the antennas is equally likely, what
is the probability that the system will be functional?

For small values of n and m, say n = 4 and m = 2, we can write out all of the possible
configurations. Representing a functional antenna by 1 and a defective antenna by 0, there
are exactly six linear arrangements:

1. 0 1 1 0
2. 0 1 0 1
3. 0 0 1 1
4. 1 0 0 1
5. 1 0 1 0
6. 1 1 0 0

Take a moment to convince yourself that these are the only possible configurations. Con-
figurations 1, 2, and 5 are functional, so there are 3 functional configurations out of 6 total
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configurations. So in this case, the probability that the system is functional is 3/6.

For general n and m, it is not immediately obvious how to perform the requisite counting of
configurations. Taking a cue from the Count on Sesame Street, we need to learn more about
counting. The mathematical theory of counting is known as combinatorics.

1.5.1 The Basic Principle of Counting

The basic principle of counting (mn-rule)

Suppose we are performing two experiments. If the first experiment has m possible
outcomes and the second experiment has n possible outcomes, there are mn possible
outcomes for the two experiments. We can generalize this to more than two experiments;
in that case, we take the product of the number of outcomes from each experiment.

To see this, draw a grid of boxes with the m outcomes from the first experiment on the left
and the n outcomes of the second experiment across the top. There are mn total boxes,
which are all the possible outcomes of both experiments.

1

2

3

m

1 2 3 n

...

...

...

...

Second experiment

First
Experiment

We have already seen the basic principle of counting in play when we looked at the sample
space for two dice. Each of the two die rolls is a separate experiment. Since there are 6
outcomes for each die roll, the total number of outcomes is 6 · 6 = 36. We can extend
this to three or more dice. For three dice, for example, the total number of outcomes is
6 · 6 · 6 = 63 = 216. If you like, you can visualize this as a cube. For n dice, there are 6n

possible outcomes. I have trouble visualizing this for n > 3, but perhaps you can.

We can also think of the basic principle of counting in terms of choosing items from groups.
If there are m items in Group 1 and n items in Group 2, there are mn pairs of items con-
sisting of one item from each group. Again, this can be extended to any number of groups.

Example. When I was growing up in Virginia, standard (non-vanity) license plates were
composed of three letters (A-Z) followed by three digits (0-9). Assuming that all such
possibilities can exist:
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1. How many possible license plates are there?

We are choosing items from 6 groups. The first three groups contain 26 items, and the
last three groups contain 10. Thus the number of possibilities is: 26 ·26 ·26 ·10 ·10 ·10 =
17, 576, 000. (That works out to a little more than two cars per person.)

2. If the Virginia DMV decided that letters and numbers could not be repeated, how
many possible license plates would there be?

The di↵erence here is that the group sizes shrink as we choose items. For the letters,
the first group has 26 items. The second group only has 25 items, since we cannot
choose the letter we chose from the first group. The third group has 24 items, since
we cannot choose the letter we chose from the first two groups. The digits are similar.
Thus the number of possibilities is: 26 · 25 · 24 · 10 · 9 · 8 = 11, 232, 000

1.5.2 Permutations

An ordered arrangement of r distinct items is called a permutation. The number of ways
of ordering r items drawn from a group of n distinct items is designated nPr.

Before we give the formula for the number of possible permutations, let’s look at some
examples so we can get an intuitive understanding of what is going on.

Example. How many di↵erent ordered arrangements are there of the letters a, b, and c?

In this case, we can actually write them all out: abc, acb, bac, bca, cab, cba.
From this we see that there are 6 possible ordered arrangements. We can also do this using
the “choosing-from-groups” approach. For the first letter, we have 3 to choose from; for
the second, we have only 2; and for the third, there is only one remaining letter. Thus the
number of permutations is:

3 · 2 · 2 = 3! = 6

Similarly, the number of ordered arrangements of n distinct symbols is:

n · (n� 1) · (n� 2) · · · 2 · 1 = n!

The symbol n! is the factorial operation, and it is defined exactly as written above.

Example. Every December (since 1996), the city of Ithaca, NY hosts the International
Rutabaga Curl4 (contestants must supply their own rutabaga). Gold, silver, and bronze
medals are given to the top three finishers. If 100 contestants enter the rutabaga curl, how
many possibilities are there for the winners?

4
http://www.rutabagacurl.com
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For the gold medalist, we have 100 contestants to choose from. Since you cannot win more
than one medal, we choose from 99 contestants for the silver medal and 98 contestants for
the bronze medal. The number of medal possibilities is:

100 · 99 · 98 = 970, 200

We can generalize this in the following formula:

The number of permutations (ordered arrangements) of r items drawn from a group of
n distinct items is:

nPr = n(n� 1)(n� 2) · · · (n� r + 1) =
n!

(n� r)!

To see this, there are:

• n ways to choose the first item

• n� 1 ways to choose the second item

· · ·

• n� r + 1 ways to choose the rth item

Multiply these together to get the permutation formula. To get the “factorial form” of the
permutation formula, we have:

nPr = n(n� 1)(n� 2) · · · (n� r + 1)
(n� r)!

(n� r)!
=

n!

(n� r)!

where n! = n(n� 1) · · · 2 · 1, and we define 0! = 1.5

1.5.3 Combinations

Consider the following example, which is modification of the Rutabaga Curl example above.

Example. 100 students buy ra✏e tickets. Three names are chosen from a hat uniformly at
random to win a free sandwich at Eastside Pockets6. How many possibilities are there for
the winners?

How is this problem fundamentally di↵erent from the Rutabaga Curl? Here, the three prizes
are identical, as opposed to the three distinct medals in the Rutabaga Curl. We can think
of this problem as selecting 3 items from a group of 100, but the order in which we select

them does not matter. Let’s look at this in a few stages:

5This may seem a little arbitrary, but it is convenient. It also makes some sense that there is exactly one
way to arrange no items.

6A popular eatery on Thayer St. near Brown University

11



1. Let’s pretend for a moment that the order of selection matters. Then, as in the
Rutabaga Curl, there are 100 · 99 · 98 possibilities.

2. Compared to the the case where order matters, is the number of possibilities greater,
fewer, or the same? There must be fewer possibilities since, for example, choosing the
numbers (1, 2, 3) from the hat in that order is the same as choosing them in the order
(3, 2, 1).

3. How many permutations correspond to choosing the numbers 1, 2, and 3 from the hat?
We can write out all the permutations:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1)

This gives us a total of 6 permutations. But this number is 3!, the number of ordered
arrangements of 3 objects. Does this make sense that this should be the case.

4. Since we have shown that 6 permutations correspond to one possibility of winners, all
we need to do is divide the number of permutations by 6. Thus the total number of
possibilities for the winners is:

100 · 99 · 98
6

An unordered arrangement of r distinct items is called a combination. The number
of combinations of r items drawn from a group of n distinct items is denoted

�
n
r

�
(or

sometimes nCr). We can think of this as:

1. The number of subsets of size r which can be formed from a group of n distinct
objects

2. The number of ways to select r items from a group of n distinct items, where order
does not matter

Using the logic from the previous example, we can deduce the formula for
�
n
r

�
. All we have

to do is take the number of permutations and divide by r!, which is the number of ordered
arrangements (permutations) of r items.

The number of combinations (unordered arrangements) of r items drawn from a group
of n distinct items is: ✓

n

r

◆
=

nPr

r!
=

n!

r!(n� r)!

Example. The Brown crossword puzzle club consists of 5 undergraduate and 7 graduate
students.
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1. How many di↵erent committees of 2 undergrads and 3 grad students can be formed?

There are
�
5
2

�
possible groups of 2 undergrads, and

�
7
3

�
possible groups of 3 grad stu-

dents. We multiply these together (basic principle of counting) to get:
✓
5

2

◆✓
7

3

◆
=

5!

2!3!

7!

3!4!
=

5 · 4
2 · 1

7 · 6 · 5
3 · 2 · 1 = 10 · 35 = 350

2. What if two of the grads students refuse to be on the same committee?

There are
�
7
3

�
= 35 possible groups of 3 graduate students. How many contain both

of the two students who refuse to serve together? To make a three-person committee
which includes these two, you need to include the two rival students plus one other
student selected from the five remaining graduate students. Thus there are

�
2
2

��
5
1

�
= 5

committees which include the two rival students. Subtracting from 35, there are 30
committees which don’t include both rival students. As above, we multiply to get
10 · 30 = 300 possible committees.

Computing probabilities of poker hands are classic problems in probability. Since the order
of the cards in a poker hand does not matter, these problems involve combinations.

Example. You are dealt a five-card poker hand. What is the probability of getting a full
house (three cards of one number plus two cards of another number)

There are 52 cards in a poker deck, and a poker hand is 5 cards. Since the order of the cards
dealt does not matter, there are

�
52
5

�
possible five-card poker hands. To count the number

of hands which give us a full house, we use the following procedure:

1. Choose the number for the three-of-a-kind. There are
�
13
1

�
ways to do that. Now select

three out of the four cards of this number. There are
�
4
3

�
ways to do that. Thus there

are
�
13
1

��
4
3

�
ways to choose the three-of-a-kind.

2. Choose the number for the pair. There are
�
12
1

�
ways to do that, since we have already

chosen one of the numbers for the three-of-a-kind. Now select two out of the four cards
of this number. There are

�
4
2

�
ways to do that. Thus there are

�
12
1

��
4
2

�
ways to choose

the pair once the three-of-a-kind has been chosen.

3. Multiply all of these together to get
�
13
1

��
4
3

��
12
1

��
4
2

�
poker hands which are full houses.

To get the probability of a full house, we divide by the number of poker hands (the size of
the sample space) to get: �

13
1

��
4
3

��
12
1

��
4
2

�
�
52
2

� = 0.00144

It is worth noting that the number of full houses is not
�
13
2

��
4
3

��
4
2

�
, i.e. choose two numbers,

then choose a three-of-a-kind, then choose a pair. Why does this not work? This method
does not distinguish betwen, say, 33366 and 33666 (i.e. it treats these as the same), and
these are two distinct full houses. Since this undercounts by a factor of two, you can check
that if you multiply this by two, you get the correct answer above.
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Combinations are incredibly useful. We can use them in some rather surprising cases.

Example. Consider the binary string 11000. How many distinct orderings are there of the
digits in this string?

At first, this does not appear to involve combinations at all, since we are looking for orderings,
and combinations are used where order does not matter. Let’s look at this problem in a
di↵erent way. Consider the five-element set A = {a, b, c, d, e}. There are

�
5
2

�
two-element

subsets of A. One way to describe subsets of A is to make a table. The columns of the
table represent the elements of A: a, b, c, d, and e. Each row corresponds to a subset of A:
a 1 indicates that the element is in the subset, and a 0 indicates that it is not. Here is an
example table, where we depict two two-element subsets.

a b c d e subset
0 0 1 1 0 {c, d}
1 0 1 0 0 {a, c}

Notice that two-element subsets match up exactly with orderings of 11000! Thus we see
that there are

�
5
2

�
rearrangements of the binary string 11000.

In general, if you have a string of length n composed of two symbols, and you have r of
one symbol (thus n � r of the other), the number of distinct orderings of the string is

�
n
r

�
.

Equipped with this, let’s return to the antenna example from the beginning of the section.

Example. A communication system consists of n antennas arranged in a line. Exactly m
out of the n antennas are defective. The system is functional if no two consecutive antennas
are defective. Assuming that each linear arrangement of the antennas is equally likely, what
is the probability that the system will be functional?

First we need to figure out how many possible arrangements there are, i.e. the size of our
sample space. If we use the digit 1 to represent a functional antenna, and the digit 0 to
represent a defective antenna, then each arrangement can be represented by a binary string
of length n consisting of m 0s and n �m 1s. Thus from what we learned above, there are�
n
m

�
possible arrangements.

How many of these arrangements are functional? Let’s draw a picture! Imagine we have
the n �m functional antennas in a line. We will represent each functional antenna by the
symbol *, and the spaces between the functional antennas by a vertical bar |. We will also
place a space to the far right and to the far right:

| ⇤ | ⇤ | ⇤ | ⇤ | ⇤ | ⇤ | . . . | ⇤ | ⇤ |

For the system to be functional, each space | can contain at most one defective antenna.
There are n�m+ 1 spaces to choose from, and m defective antennas to place. Thus there
are

�
n�m+1

m

�
functional arrangements. Dividing this by the total number of arrangements
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�
n
m

�
, the probability that the system is functional is:

�
n�m+1

m

�
�
n
m

�

For a sanity check, let’s calculate this for the case where n = 4 and m = 2, which we did
manually above: �

n�m+1
m

�
�
n
m

� =

�
3
2

�
�
4
2

� =
3

6
=

1

2

This agrees with what we found above!

Example. I buy an assortment of 10 bagels from Bagel Gourmet on Thayer St.7. There are
five types of bagels to choose from: everything, onion, poppy, raisin, and sesame. How many
di↵erent assortments of bagels can I bring home? Assume there are at least 10 of each kind
of bagel in the store.

We can model the problem in a way that lets us use combinations. Imagine you buy the
bagels in a special box. The bagels are arranged in a line, and are always in alphabetical
order: everything, onion, poppy, raisin, sesame. There are four dividers, one between each
bagel type, and if a bagel type is not present, we just put the dividers next to each other.
Here is an example of three bagel boxes with their dividers. Bagels are designated by * and
dividers by |.

⇤ ⇤ | ⇤ | ⇤ ⇤ ⇤ | ⇤ ⇤| ⇤ ⇤ 2 everything, 1 onion, 3 poppy, 2 raisin, 2 sesame
⇤ ⇤ ⇤|| ⇤ ⇤ ⇤ || ⇤ ⇤ 3 everything, 3 poppy, 2 sesame
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ |||| 10 everything

From the picture, we see that an assortment of 10 bagels can be represented as a linear string
of 14 symbols: 10 * representing the bagels and 4 | representing the dividers. The number of
assortments is the same as the number of distinct orderings of this linear string:

�
14
4

�
= 1001

One final application of combinations is to the binomial theorem. The binomial theorem
gives us a nice expression for expanding the binomial (x+ y)n, where n is a positive integer.

The binomial theorem

(x+ y)n =
nX

r=0

✓
n

r

◆
xryn�r

7Having lived in Brooklyn for many years, I am only slightly obsessed with bagels.

15



Due to their appearance in this theorem, the coe�cients
�
n
r

�
are often called binomial coe�-

cients. Rather than give the usual proof by induction, we will argue this is true using what
we know about combinations. Consider the product:

(x1 + y1)(x2 + y2) · · · (xn + yn)

If we multiply this out, we get a sum of 2n terms, each of which is the product of n factors.
To see this is the case, to get a term in the sum, we pick either xi or yi from each of the
n binomials (xi + yi) and multiply them together. There are 2n such terms, since for each
binomial we have two possible choices and there are n total binomials. How many of these
2n terms have exactly r of the xi terms and n�r of the yi terms? We can think of each term
as a string of length n composed of r x’s and n� r y’s. By what we learned above, there are�
n
r

�
such terms. Taking xi = x and yi = y for all i, we obtain the binomial theorem.

1.5.4 Multinomials

The number of ways of dividing n objects into k distinct groups containing n1, . . . , nk

objects each, where each object appears in exactly one group, and n1 + · · · + nk = n is
given by: ✓

n

n1 n2 · · · nk

◆
=

n!

n1! n2! · · · nk!

The term on the left is called a multinomial coe�cient

Note that this is the same as the binomial coe�cient when k = 2. To see why this is true,
we will use the following argument:

1. For the first group, we choose n1 out of n items. Since order does not matter, there
are

�
n
n1

�
ways to do this.

2. For each choice in step 1, there are
�
n�n1

n2

�
choices for the second group, since we have

already taken n1 items out of the larger group.

3. For each choice in step 1 and step 2, there are
�
n�n1�n2

n3

�
choices for the third group,

since we already have taken n1 + n2 items out of the larger group.

4. Repeat this until we get to the kth group, where there are
�
n�n1�···�nk�1

nk

�
choices for

the kth group given all the previous choices
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5. Multiply these together to get:
✓

n

n1 n2 · · · nk

◆
=

✓
n

n1

◆✓
n� n1

n2

◆✓
n� n1 � n2

n3

◆
· · ·

✓
n� n1 � · · ·� nk�1

nk

◆

=
n!

n1!(n� n1)!

(n� n1)!

n2!(n� n1 � n2!)

(n� n1 � n2)!

n3!(n� n1 � n2 � n3!)
· · · n� n1 � · · ·� nk�1!

nk!(n� n1 � · · ·� nk)!

=
n!

n1! n2! n3! · · ·nk!(n� n1 � · · ·� nk!)

=
n!

n1! n2! n3! · · ·nk! 0!

=
n!

n1! n2! n3! · · ·nk!

where, after some very satisfying cancellation, we have used the fact that n1 + · · ·+ nk = n
and 0! = 1.

If you want to think about this another way, you can use the following reasoning. Imagine
we have n objects and want to divide them into groups as above. Imagine we have a special
box which contains the n objects in a line. Divide the box into sections using dividers, so
that the first section contains n1 objects, the second n2 objects, all the way down to the
kth section which contains k objects. For example, if we had n = 10 with four groups
n1 = 2, n2 = 4, n3 = 1, n4 = 3, our box looks like:

⇤ ⇤ | ⇤ ⇤ ⇤ ⇤| ⇤ | ⇤ ⇤⇤

where * represents a space to put an objects, and | is a section divider. There are n!
permutations of n objects, thus there are n! distinct ways to place the n objects into the
box. Since we are dividing our objects into groups, order does not matter within each group.
The first section in the box represents the first group, so since order does not matter within
that section, we divide by n1!, the number of permutations of n1 objects. Repeating this for
each section, we divide by each ni! in turn to obtain our multinomial coe�cient.

Example. A group of 15 international relations students will be divided into three groups.
Each group consists of 15 students and is assigned a di↵erent country (Azerbaijan, Belarus,
and Chechnya) on which to do a group final presentation. How many such divisions are
possible:

Since we are are dividing 15 people into 3 distinct groups of 5, we can use the multinomial
coe�cient to determine the number or arrangements:

✓
15

5 5 5

◆
=

15!

5! 5! 5!
= 756, 756

Example. Now suppose we are dividing a group of 15 international relations students into
three groups of 5 students each for a final project of the each group’s choosing. How is this
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problem di↵erent from the previous one? How many di↵erent arrangements are possible?

In the previous example, the three groups were distinct, so it matters which one a student
is assigned to. In this case, the three groups are identical. Thus since the order of the three
groups does not mater, we divide the previous result by 3!, which is the number of ways of
ordering three items (in this case, the items are the three groups).

�
15

5 5 5

�

3!
=

15!

5! 5! 5! 3!
= 126, 126

Example. How many di↵erent, distinct rearrangements are there of the word MISSISSIPPI?

We are looking for all distinct orderings of a string with four distinct symbols. If there were
only two distinct symbols, we could use binomial coe�cients, so we suspect multinomial
coe�cients may be in play here. Once again, consider a set with eleven elements in them,
which we will label with the integers 1 - 11. We want to divide those elements into four
subsets with 1, 2, 4, and 4 elements (respectively). We will label those subsets by the letters
M, P, I, and S (no coincidence here!). Let’s make a table, where each row is a subset, and
letters M, I, S, and P in the row indicate which subset each element belongs to.

1 2 3 4 5 6 7 8 9 10 11
M I S S I S S I P P I
I S I P M P S I S S I

Note that there is a perfect correspondence between each appropriate collection of four
subsets and each arrangement of MISSISSIPPI. Thus we can use the multinomial coe�cient
for this problem, and we get that the total number of distinct rearrangements is:

✓
11

1 2 4 4

◆
=

11!

1! 2! 4! 4!
= 34, 650

1.6 Conditional Probability

Sometimes the probability of an event will depend on whether or not another event has
occurred. There are many real-life examples of this:

1. In weather prediction, the probability of rain tomorrow depends on whether or not it
is raining today. This especially makes sense during the tropical storm season when it
will often rain for days on end.

2. In the field of public health, probabilities of developing disease depend on many outside
factors. The probability of developing lung cancer, for example, depends on factors
such as smoking history, exposure to second-hand smoke, and occupational exposure
to asbestos.

3. Poker players are constantly thinking about conditional probability. For example, what
is the probability of an inside straight draw on the final two cards given the cards the
player has already seen?
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Let’s do a simple die-tossing example, and then generalize.

Example. On a standard, fair six-sided die, the probability of rolling a 1 is 1/6. This
is the unconditional probability of rolling a 1, since this probability does not depend on
any additional information. Now suppose we know that our die roll is odd. What is the
conditional probability of rolling a 1 given the die roll is odd? There are 3 possible odd rolls:
1, 3, and 5. We reduce our sample space to the three odd rolls since we know one of those
occurred. Since we still have a discrete uniform distribution, each of the three odd rolls is
equally likely. Thus the probability of rolling a 1 given an odd roll is 1/3.

Note that what we did above is reduce our sample space from all six possible rolls to the
three odd rolls. We then kept the uniform distribution on the the new, smaller sample space.
To generalize this to arbitrary events, let’s draw a picture! Let S be our sample space, and
consider two events A and B in S.

S

A B

We are interested in the probability of A given that B has occurred, which we will write
P(A|B) (“the probability of A given B”). If P(B) = 0, i.e. B cannot occur, then P(A|B)
must also be 0 (does this make sense?) So we are only interested in the case where P(B) > 0,
i.e. B can actually happen. What we are going to do is restrict our sample space from S
down to B since the only events we care about are ones where B has occurred. Imagine
taking an eraser (or digital equivalent) to the picture above and removing everything that is
outside of B. We are left with the following picture:

A ∩ B
B

The piece of A which lies inside B is A \ B, which is on the left of the picture above. If
we think of probability intuitively as “area” in pictures like this, it makes sense that the
conditional probability of A given B is the ratio of P(A \B) to P(B).
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Let A and B be two events. The conditional probability of A given that B has occurred
is given by:

P(A|B) =
P(A \B)

P(B)

as long as P(B) = 0. (If P(B) = 0, then this is zero.)

As a sanity check, let’s use this definition of conditional probability and redo our die roll
example from above.

Example. What is the probability of rolling a 1 on a standard six-sided die given than an
odd number was observed?

Let A be the event that a 1 is rolled, and B the event that an odd number is rolled. Since
A ⇢ B, A\B = A (does this make sense?) Using the discrete uniform distribution, P(A) =
1/6 and P(B) = 1/2 (since B is composed of three simple events, each with probability 1/6).
Thus we have:

P(A|B) =
P(A \B)

P(B)
=

P(A)
P(B)

=
(1/6)

(1/2)
=

1

3
⇡ 0.339

This agrees with our intuitive computation above.

Let’s do another example, this time using the roll of two dice.

Example. You roll two standard, fair six-sided dice. What is the the probability that the
sum is greater than or equal to 11, given that the first roll is a 6?

Let A be the event that the sum is greater than or equal to 11, and B the event that the
first roll is a 6. The events are shown graphically below.

1 2 3 4 5 6
1

2

3

4

5

6

1 2 3 4 5 6
1

2

3

4

5

6

BA

First let’s use the sample space reduction method. Given that B has occurred, i.e. the first
roll is a 6, we reduce our sample space to B, i.e. to the bottom row of the picture. There
are six squares in the bottom row, and since we still have the uniform distribution, each is
equally likely. Of those 6, 2 of them (the rightmost two) have a sum of dice greater than or
equal to 11. Thus the conditional probability is P(A|B) = 2/6 = 1/3.
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We can also use our definition of conditional probability. Using the uniform distribution,
P(B) = 6/36. Since A\B is the two rightmost square on the bottom row, P(A\B) = 2/36.
By the definition of conditional probability:

P(A|B) =
P(A \ B)

P(B)
=

2/36

6/36
=

1

3

Thus again we get the same answer using either method.

Sometimes using a reduced sample space is much easier that using the definition of condi-
tional probability. Consider the following example.

Example. In the card game bridge (which is near and dear to my heart), 52 cards are dealt
out equally to 4 players (called North, South, East and West). Given that North and South
have a total of 8 spades between them (out of 13 total spades), what is the probability that
East has 3 spades.

Here it is easiest to work with a reduced sample space. If North and South have 26 cards
and 8 spades between them, then East and West much have the remaining 26 cards and 5
spades between them. The reduced sample space we will work with is the sample space of
possible hands for East. Since East has 13 of the remaining 26 cards, there are

�
26
13

�
possible

hands for East. This is the size of the sample space. In how many of those hands does East
have exactly 3 spades? To do this, we first choose 3 of the remaining 5 spades. There are�
5
3

�
ways to do this. Then we need to choose the non-spade cards. East has 10 non-spade

cards, and there are 26 � 5 = 21 non-spade cards to choose from, thus there are
�
21
10

�
ways

to choose these. Multiplying these together, there are
�
5
3

��
21
10

�
possible hands where East has

exactly 3 of the remaining spades. Thus the conditional probability that East has 3 spades
given that North and South have 8 spades between them is:

�
5
3

��
21
10

�
�
26
13

� ⇡ 0.339

1.7 Independence

Two events A and B are independent if the whether or not one event occurs is una↵ected
by whether or not the other event occurs. We will make this mathematically precise in a
moment, but here are some intuitive examples:

1. You are flipping coins repeatedly. Each coin flip is independent of all other coin flips,
since there is no way for coin flips to a↵ect each other. Now imagine you flip 10 heads
in a row. It is tempting to say that the streak of heads must break, and that it is more
likely than not that the 11th flip is a tail. This is known as the gambler’s fallacy, and
is false since the flips are independent, and each flip has a 1/2 probability of heads. A
famous example of this occurred in the Monte Carlo casino in Monaco on August 18,
1913. In a game of roulette, the ball landed on black 26 times in a row, and gamblers
lost a lot of money betting that the streak would break.
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2. In blackjack, if a player is dealt an ace, the next deal is less likely to be an ace,
since the cards are drawn without replacement. Successive deals of cards are thus not
independent. This is the basis for counting cards in blackjack and other games.

3. In the field of public health, “smoking” and “contracting lung cancer” are not inde-
pendent since a causal link has been shown between the two.

We are ready to formally definite the concept of independence.

Let A and B be two events. A and B are independent if any of the following hold:

P(A|B) = P(A)
P(B|A) = P(B)

P(A \ B) = P(A)P(B)

In plain language, two events are independent if the conditional probability is the same
as the unconditional probability, or if the probability of both events occurring is the same
as the product of the probabilities of the individual events.

Let’s look at a few examples of independence.

Example. Let us roll a single fair, six-sided die, and consider the following events:

• A: we roll an odd number

• B: we roll an even number

• C: we roll a 1 or a 2

1. Are A and B independent?

Because A\B = ;, P(A\B) = 0, thus P(A|B) = P(A\B)/P(B) = 0. But P(A) = 1/2.
Since P(A|B) 6= P(A), A and B are not independent. We did not expect them to be
independent, since if A occurs, B cannot occur, and vice versa.

2. Are A and C independent?

Using the sample space reduction method, we see that P(A|C) = 1/2, since if we know
we roll a 1 or a 2, half the time we will roll an odd number. Since P(A) = 1/2 as well,
P(A|C) = P(A), thus A and C are independent.

For our next problem we revisit our familiar two-coin-flip example.

Example. Let us roll two fair, six-sided dice, and consider the following events:

• A: we roll a 4 on the first die
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• B: the sum of the two dice is 6

• C: the sum of the two dice is 7

1. Are A and B independent?

Here we use the “product of probabilities” test for independence. P(A \ B) = 1/36,
since if we know the first die is 4 and the two dice sum to 6, the second die must be
a 2; this corresponds to a single point in the sample space. P(A) = 1/6, since a single
die has a 1/6 chance of rolling any number. B comprises 5 simple events, as we can
see graphically below; thus P(B) = 5/36.

1 2 3 4 5 6
1

2

3

4

5

6

B

Since P(A)P(B) = (1/6)(5/36) = 5/216 6= 1/36 = P(A \ B), these events are not
independent. Why does this make sense? If we are interested in a sum of 6 on two
dice, the outcome of the first throw matters; a sum of 6 is impossible if the first die is
a 6, and is possible for all other rolls of the first die. Thus is makes sense that A and
B should not be independent.

2. Are A and C independent?

Here, we have again that P(A \ C) = 1/36, since if we know the first die is 4 and
the two dice sum to 7, the second die must be a 3; P(A) = 1/6 as above. We can
see graphically that P(C) = 6/36 = 1/6, since C comprises 6 simple events. Thus
P(A)P(C) = (1/6)(1/6) = 1/36 = P(A \ C), and so A and C are independent. Why
does this make sense? No matter what we roll on the first die, there is an equal
probability (1/6) of getting a sum of 7 when the second die is rolled.

1.8 Multiplicative and Additive Laws of Probability

The multiplicative and additive laws of probability give the probabilities of intersections
and unions of events, and are important in constructing probabilities for more complicated
events.
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The multiplicative law of probability

Let A and B be two events. Then the probability of the intersection of the two events
is:

P(A \B) = P(A)P(B|A)
= P(B)P(A|B)

If A and B are independent, then:

P(A \ B) = P(A)P(B)

This follows directly from the definition of conditional probability. We can extend this to
find the probability of the intersection of multiple events. For example, for three events A,
B, and C, we have:

P(A \ B \ C) = P(A)P(B|A)P(C|A \B)

We can extend this string of conditional probabilities to find the probability of the intersec-
tion of as many events as we want.

The additive law of probability gives the probability of the union of two events.

The additive law of probability

Let A and B be two events. Then the probability of the union of the two events is:

P(A [ B) = P(A) + P(B)� P(A \B)

If A and B are disjoint (mutually exclusive), i.e. P(A \B) = ;, then:

P(A [ B) = P(A) + P(B)

To see this is true, consider the Venn diagram below.

S

A B

E F G
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1. A[B (show in gray) is the disjoint union of E, F , and G, so by the additive property
of probability, P(A [ B) = P(E) + P(F ) + P(G).

2. A is the disjoint union of E and F , so by P(A) = P(E) + P(F ).

3. B is the disjoint union of F and G, so by P(B) = P(F ) + P(G).

4. Addding together P(A) and P(B), and noting that F = A \ B:

P(A) + P(B) = P(E) + P(F ) + P(F ) + P(G)

= P(A [B) + P(A \B)

Rearranging this, we get the additive rule.

Intuitively, if we add the probability of A and B, we are “double-counting” A \ B, so we
have to subtract it o↵ to get P(A [ B). This can be extended to unions of more than two
sets, but the formulas are annoying and will not be useful to us in this course.
We can use the multiplication and addition rules in the following problem.

Example. You have two bags of balls. The first bag contains one red ball and three white
balls. The second bag contains two red balls and two white balls. You choose a bag uniformly
at random and then draw a ball from the chosen bag.

1. What is the probability that the ball you draw is red?

We can do this directly using the multiplication and addition rules if we wish, but it
is far easier to draw a tree diagram. Let B1 be the event that we choose Bag 1, and B2

the event that we choose Bag 2. Let R be the event that we draw a red ball, and W
be the event that we draw a white ball. Then we have the following tree diagram.

B1

B2

R

W

1/2

1/2

1/4

R

W

1/2

3/4

1/2

1/8

3/8

2/8

2/8
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Tree diagrams are really hard to explain in writing, but I will try. Starting at the
node on the left, the first two edges of the tree are B1 and B2. Their respective
probabilities are written below, and are both 1/2, since the choice of bag is uniform.
At the point, the tree branches again. Let’s look at the top of the tree diagram, the
part which follows B1. The upper branch is labeled R, and indicates that the event R
follows B1. The probability listed there is the conditional probability of R given B1, so
P(R|B1) = 1/4. If we follow the arrows through B1 and R, we reach the leaf of the tree
which is labeled 1/8. This leaf represents the event B1 \ R, since we passed through
both of those events to get there. The probability 1/8 listed there is the probability
of B1 \ R. We get this by multiplying all the probabilities we passed through to get
there. This follows the multiplication rule, since:

P(B1 \R) = P(B1)P(R|B1) = (1/2)(1/4) = 1/8

The interpretation of the other branches of the tree is similar. Here is a version of the
tree diagram with all the probabilities (conditional and otherwise) labeled:

B1

B2

R

W

P(B1)

P(B2)

P(R | B1)

R

W

P(W | B1)

P(R | B2)

P(W | B2)

P(B1 ∩ R)

P(B1 ∩ W)

P(B2 ∩ R)

P(B2 ∩ W)

To find P(R), we just add up all the leaves that end passing through R. There are two
such leaves, labeled with probabilities 1/8 and 2/8, thus P(R) = 1/8 + 2/8 = 3/8.

In adding the probabilities above, we used the addition rule. To see how we used it,
recall that the sample space is designated S and that B1 and B2 are disjoint with
B1 [ B2 = S (you can only choose one bag, and you must choose a bag):

R = R \ S intersecting with S does nothing, since A ⇢ S
= R \ (B1 [ B2)

= (R \ B1) [ (R \ B2) by the distributive law
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Then since R \ B1 and R \ B2 are disjoint (why is this the case?), we can use the
addition rule to get:

P(R) = P(R \B1) + P(R \ B2) = 1/8 + 2/8 = 3/8

2. What is the probability we chose Bag 1 in the first step given that we draw a red ball?

Here we are looking for the conditional probability P(B1|R). We computed P(R) in the
first part, and we can read o↵ P(B1 \ R) = 1/8 from the tree. Thus by the definition
of conditional expectation:

P(B1|R) =
P(B1 \R)

P(R)
=

1/8

3/8
=

1

3

1.9 Bayes’ Rule and the Law of Total Probability

Given two events A and B, Bayes’ rule is a mathematical formula for relating the two
conditional probabilities P(A|B) and P (B|A). In it’s simplest form, Bayes’ rule may be
stated as follows:

Bayes’ rule

Let A and B be two events. Then:

P(A|B) =
P(B|A)P(A)

P(B)

where P(B) 6= 0.

To see this is true, we can multiply both sides by P(B) to get:

P(A|B)P(B) = P(B|A)P(A)

Both sides of this equation are equal to P(A \ B) by the definition of conditional probabil-
ity, thus the statement of Bayes’ rule is true. Let’s return to the drawing-balls-from-bags
example, and use Bayes’ rule on it.

Example. You have two bags of balls. The first bag contains one red ball and three white
balls. The second bag contains two red balls and two white balls. You choose a bag uni-
formly at random and then draw a ball from the chosen bag. What is the probability that
you choose the Bag 1 in the first step given that the ball drawn is red?

Using the same events as above, we are looking for conditional probability P(B1|R). For the
opposite conditional probability, P(R|B1) = 1/4 since we know exactly what happens if we
draw from Bag 1. P(B1) = 1/2, since we are choosing the bags uniformly at random. To use
Bayes’ rule, the only remaining probability we need is P(R), which is harder to compute.
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Luckily we found it above using the tree diagram, so we know P(R) = 3/8. (We will learn
a formula later which gets around this pesky probability.) Thus we plug everything into
Bayes’ rule to get:

P(B1|R) =
P(R|B1)P(B1)

P(R)
=

(1/4)(1/2)

3/8
=

1

3

which agrees what we obtained above.

Bayes’ rule is most often used in conjunction with the Law of Total Probability, which we
state below. First we need to define a partition of a sample space.

Partition of a sample space

A partition of a sample space S is a finite collection of disjoint subsets of S whose union is
S. Intuitively, a partition of S is a “division of S into separate pieces”. Mathematically,
a partition of S is a collection {E1, E2, . . . , Ek} of subsets of S such that:

1. S = E1 [ E2 [ · · · [ Ek

2. Ei \ Ej = ; for i 6= j

For any event A, the collection {A,Ac} is always a partition of S (can you see why this is
the case?) For a finite sample space, the collection of all simple events is also a partition.
Here is a partition of S into 4 subsets illustrated graphically.

S

E1 E2

E3 E4

If A is any event, and {E1, E2, . . . , Ek} is a partition of S, then we can decompose A according
to the partition by:

A = (A \ E1) [ (A \ E2) [ · · · [ (A \ Ek)

where this union consists of disjoint sets (since the partition consists of disjoint sets). For
k = 4, this is illustrated graphically below:
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S

E1 E2

E3 E4

A

A ∩ E1

A ∩ E3

A ∩ E2

A ∩ E4

We are now ready to state the Law of Total Probability.

Law of total probability

Let {E1, E2, . . . , Ek} be a partition of S such that P(Ei) > 0 for all i. Then for any event
A, we can decompose the probability of A according to our partition as:

P(A) =
kX

i=1

P(A|Ei)P(Ei)

To see this is true, first we decompose our event A as we did above into disjoint sets:

A = (A \ E1) [ (A \ E2) [ · · · [ (A \ Ek)

Then we can write:

P(A) = P((A \ E1) [ (A \ E2) [ · · · [ (A \ Ek))

= P(A \ E1) + P(A \ E2) + · · ·+ P(A \ Ek)

= P(A|E1)P(E1) + P(A|E2)P(E2) + · · ·+ P(A|Ek)P(Ek)

where we have used the fact that the decomposition of A is a union of disjoint sets, and have
also used the definition of conditional probability.

We can now combine Bayes’ rule and the Law of Total Probability to get another version of
Bayes’ rule.

29



Bayes’ rule, total probability version

Let A and B be two events, and let {E1, E2, . . . , Ek} be a partition of S such that
P(Ei) > 0 for all i. Then:

P(A|B) =
P(B|A)P(A)

Pk
i=1 P(B|Ei)P(Ei)

where P(B) 6= 0.

To get this, take Bayes’ rule and expand P(B) in the denominator using our partition and
the Law of Total Probability.

Let’s revisit the drawing-balls-from-bags example one final time, using the total probability
version of Bayes’ rule.

Example. You have two bags of balls. The first bag contains one red ball and three white
balls. The second bag contains two red balls and two white balls. You choose a bag uni-
formly at random and then draw a ball from the chosen bag. What is the probability that
you choose the Bag 1 in the first step given that the ball drawn is red?

Using the same events as in the above two versions, we are once again looking for conditional
probability P(B1|R). Our partition is {B1, B2} since one of these two events must occur (so
the union is S), but both cannot occur (so they are disjoint). Writing out Bayes’ rule, we
get:

P(B1|R) =
P(R|B1)P(B1)

P(R|B1)P(B1) + P(R|B2)P(B2)

The probabilities involved in this are straightforward:

1. P(B1) = P(B2) = 1/2

2. P(R|B1) = 1/4

3. P(R|B2) = 1/2

So we just plug these in to get:

P(B1|R) =
(1/4)(1/2)

(1/4)(1/2) + (1/2)(1/2)
=

1/8

3/8
=

1

3

which agrees with both versions above!

Example. Consider the following card game. We have 3 cards that are identical in shape
and size. The cards are colored as follows:

1. both sides are red
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2. both sides are black

3. one side is red and the other side is black

The three cards are shu✏ed and one is randomly chosen and it put down on a table. If the
face-up side of the chosen card is red, what is the probability that the other side is black?

Let RR, BB, and RB denote the events that the chosen card is all red, all black, or red-
black (respectively). Let R be the event that the face-up side of the chosen card is red.
Note that {RR,BB,RB} is a partition of our sample space. We are interested in whether
the red-black card has been chosen, i.e. P(RB|R). First we write out the total probability
version of Bayes’ rule, then we plug in the probabilities we know:

P(RB|R) =
P(R|RB)P(RB)

P(R|RR)P(RR) + P(R|BB)P(BB) + P(R|RB)P(RB)

=
(1/2)(1/3)

(1)(1/3) + 0(1/3) + (1/2)(1/3)

=
1/6

1/2

=
1

3

Thus the probability that the other side is black is only 1/3. It is tempting to guess that
that the probability of the other side being black is 1/2 since there are two possible cards it
could be (all red and red-black), and they should be equally likely. It turns out that this is
not the case! The two cards are not equally likely. Here is one way to see this. Instead of
considering three cards, let’s think of them as six sides. We can label the six sides as:

1. R1 and R2: the two red sides of the all-red card

2. B1 and B2: the two black sides of the all-black card

3. R3 and B3: the red and black sides of the red-black card

If red is face up, it must be R1, R2, or R3, and these are equally likely. For R1 and R2, the
other side of the card is red. Only for R3 is the other side black. Thus the probability of the
other side of the card being black is 1/3, which agrees with the result from Bayes’ theorem.

Here is another application of Bayes’ theorem which concerns medical testing. This is a
classic example in the field of public health.

Example. The OraQuick HIV test is a rapid test for HIV, which can give a result in 20
minutes. The test has the following properties:

1. Sensitivity (probability of a positive test given that you have the disease): 0.996 (99.6%)

2. Specificity (probability of a negative test given that you don’t have the disease): 0.999
(99.9%)
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What is the positive predictive value of the test, i.e. the probability that a patient has HIV
given that the OraQuick test is positive8.

Let T be the event that the test is positive, and H the event that the patient has HIV. We
are interested in the positive predictive value, which is P(H|T ). Let’s write out Bayes’ rule:

P(H|T ) = P(T |H)P(H)

P(T )

We cannot possibly know the denominator P(T ) (the probability of a positive test), so we
will use the total probability of Bayes’ theorem, with partition {H,Hc}.

P(H|T ) = P(T |H)P(H)

P(T |H)P(H) + P(T |Hc)P(Hc)

What do we know? P(T |H) is the sensitivity, so that is 0.996. We don’t know P(T |Hc),
but we do know the specificity, which is P(T c|Hc) = 0.999. Since P(T |Hc) + P(T c|Hc) = 1
(either the test is positive or it’s not), P(T |Hc) = 1 � P(T c|Hc) = 1 � 0.999 = 0.001. All
that remains is P(H). (P(Hc) = 1 � P(H), so we are all set once we have P(H).) What is
P(H)? That is the probability that a randomly-selected patient has HIV, what is known in
public health parlance and the disease prevalence. This can be a hard quantity to determine
and is the crux of this entire problem.

The CDC estimates that 1.2 million people in the US have HIV9, out of a total population
of 319 million. That puts the prevalence of HIV at 0.00376. So we will take P(H) = 0.00376
for now, which gives us P(Hc) = 1� 0.00376. Plugging everything into Bayes’ theorem:

P(H|T ) = (0.996)(0.00376)

(0.996)(0.00376) + (0.001)(1� 0.00376)
= 0.79

So we get a positive test in 80% of the cases, which is decent but not great. Let’s repeat
this with a di↵erent value for the prevalence of HIV. In Fulton County, GA (which contains
Atlanta) the prevalence of HIV is approximately 0.0123 (significantly higher than for the
nation as a whole). This gives us a positive predictive value of:

P(H|T ) = (0.996)(0.0123)

(0.996)(0.0123) + (0.001)(1� 0.0123)
= 0.925

which is higher. The take-home message here for public health is the following. The positive
predictive value of a test depends on the prevalence of the disease you are testing for; it
increases as a disease becomes more common, i.e. increases with disease prevalence. Even
the most sensitive and specific test does a poor job of detecting rare diseases.

8Sensitivity, specificity, and positive predictive value are public health terms; you don’t have to know
them. Data here is from the CDC website.

9This estimate is for the end of 2012, but is the most recent CDC data I can find.
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