
7 Hypothesis Testing

7.1 Introduction

Statistical hypothesis testing is a formal procedure for conducting scientific inquiry accord-
ing to the scientific method. In the scientific method, a scientist poses a hypothesis based on
observations from nature. She then conducts an experiment to test that hypothesis, and the
results of that experiment either support or refute the hypothesis. From our mathematical
standpoint, a hypothesis is a claim about one or more parameters of a population (or more
than one population) of interest. For example, we might claim that a parameter equals a
certain value or falls within a certain range. We then take a sample from our population and
use an appropriate estimator to estimate the parameter of interest. We then use statistical
techniques to either support or refute our hypotheses, and to determine the probability that
we made the correct decision.

Here are two examples of hypothesis tests.

1. You are a pollster for a major news outlet, and are interested in the preferences of
urban vs. rural voters in Rhode Island. Your hypothesis is that rural voters are less
likely to prefer Gina Raimondo. The parameter of interest is p1 − p2, the difference
in the proportion of Raimondo supporters in the two populations. You then sample
registered voters from both populations and construct the estimator p̂1 − p̂2. Using
statistics, you will be able quantify the probability that you correctly accept or reject
your hypothesis based on the value of the estimator. In particular, you will be able to
determine the probability that you made the wrong decision in accepting or rejecting
your hypothesis.

2. You are the principal investigator for a trial of a new drug to treat hypertension (high
blood pressure). You claim that your new drug will reduce systolic blood pressure
by 10 mmHg compared to a placebo pill. The parameter of interest is µ1 − µ2, the
difference in mean blood pressure reductions between the mythical populations of all
people with hypertension who would receive the drug and all people with hypertension
who would receive a placebo. Your hypothesis is that µ1 − µ2 ≥ 10. To test this, you
will do a double-blind study and randomly assign 100 patients to receive the drug and
100 patients to receive the placebo pill. You will use the estimator Ȳ1 − Ȳ2 to test
your hypothesis. Using statistics, you will be able quantify the probability that you
correctly accept or reject your hypothesis based on the value of the estimator.

Hypothesis testing uses the ideas we learned in the previous sections – sampling, estimators,
and confidence levels – to

7.2 Elements of a Hypothesis Test

There are four elements of any hypothesis test. We will go through an example as we discuss
them.
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Example. Suppose we are interested in the voting preference in Rhode Island for the gu-
bernatorial election.

1. We start with a hypothesis that we would like to support. This is called the alternative
hypothesis. For example, our alternative hypothesis could be “More than 50% of the
voters in Rhode Island support Gina Raimondo”. In mathematical terms, our popula-
tion of interest is the registered voters in Raimondo, and our parameter of interest is p,
the proportion of registered voters who support Raimondo. The alternative hypothesis
can be stated in terms of p as p > 0.5.

2. We will obtain support for our alternative hypothesis by showing (to a specified degree
of confidence) that the null hypothesis, the converse of the null hypothesis, is false. You
may have heard of this as “rejecting the null hypothesis”. The null hypothesis in this
case is “50% or fewer voters in Rhode Island support Raimondo”. Mathematically, we
could state this as p ≤ 0.5 if we like. However, it turns out that this is not a useful
way to state the null hypothesis. Recall that we wish to find evidence to reject the
null hypothesis. The only way to reject the hypothesis p ≤ 0.5 is for our estimator p̂
to produce a value over 0.5. Consider the hypothesis p = 0.5. Suppose our estimator
p̂ is 0.6, and we decide that this is sufficient evidence to reject the hypothesis p = 0.5.
If we will reject p = 0.5, we will certainly also reject p ≤ 0.5, since if we are willing to
reject p = 0.5, we are even more willing to reject anything lower. Thus it suffices to
take p = 0.5 as our null hypothesis.

3. A test statistic is something we can actually measure which we will use to either reject
or not reject the null hypothesis. In general, the test statistic will be one of our common
estimators, such as Ȳ or p̂, or the equivalent estimators for the difference between two
populations. In this case, since we are interested the population proportion p, we will
use p̂ = Y/n for our estimator, where Y is the number of people out of a sample of size
n who prefer Raimondo.

4. Armed with a test statistic, the only thing left is to decide when we will reject the null
hypothesis. A rejection region (RR) specifies the values of the test statistic for which
the null hypothesis will be rejected. The RR is given as a range a values. In this case,
since we will reject the null hypothesis if p̂ is high, the rejection region will look like
p̂ ≥ k, where k is a threshold we will choose. A lower value of k means that we are
more likely to reject the null hypothesis; in particular, we are more likely to reject the
null hypothesis when it is in fact true, so we are more likely to commit a false positive
error. Conversely, a higher value of k means that we are less likely to reject the null
hypothesis; in fact, we are more likely to fail to reject the null hypothesis when in fact
the null hypothesis is false, thus we are more likely to commit a false positive error.
Thus there is no idea value of k for us to choose. We will discuss later how to pick a
k based on the amount of false positives and false negatives we are willing to accept.

We can summarize the elements of any hypothesis test in the following table. Although the
null hypothesis is “more fundamental”, I list the alternative hypothesis first, since that lets
us find the form of the null hypothesis.
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Elements of a Hypothesis Test

1. Alternative hypothesis, Ha

2. Null hypothesis, H0

3. Test statistic

4. Rejection region (RR)

Before we go any further, we will take several real-world examples of hypothesis tests, and
specify their four parameters. We will discuss how to choose rejection regions and how to
quantify our confidence in rejecting the null hypothesis in the next sections. For complete-
ness, the first one will be the example we did above. We will use these examples throughout
this section.

1. You are a pollster who is interested in the voting preference in Rhode Island for the
gubernatorial election. The population of interest is the number of registered voters in
Rhode Island, and the parameter of interest is the p, the proportion of voters who are
Gina Raimondo supporters.

(a) Alternative hypothesis, Ha : p > 0.5

(b) Null hypothesis, H0 : p = 0.5

(c) Test statistic, p̂ = Y/n

(d) Rejection region (RR), {p̂ > k}

2. You are the principal investigator for a trial of a new drug to treat hypertension. The
populations of interest are all patients with hypertension who receive you drug and
all patients with hypertension who receive a placebo. The parameter is interest is the
difference in mean blood pressure reduction µ1 − µ2 between these two populations.

(a) Alternative hypothesis, Ha : µ1 − µ2 > 10

(b) Null, H0 : µ1 − µ2 = 10

(c) Test statistic, Ȳ1 − Ȳ2

(d) Rejection region (RR), {Ȳ1 − Ȳ2 > k}

3. You are a mechanical engineer and have designed a ball bearing machine which pro-
duces ball bearings which are 5 mm in diameter. Since your customers demand preci-
sion, the machine needs to be recalibrated if the average ball bearing diameter deviates
from 5 mm by more than 1 percent. You suspect there might be something wrong with
the machine. The population of interest is all ball bearings produces by your machine.
The parameter of interest is µ, the average ball bearing diameter.
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(a) Alternative hypothesis, Ha : µ 6= 5

(b) Null hypothesis, H0 : µ = 5

(c) Test statistic, Ȳ

(d) Rejection region (RR), |Ȳ − 5| > k

Note that there is something unusual about the third example. For the first two examples,
the alternative hypothesis was that the parameter of interest is above a certain value. These
are known as upper-tail hypothesis tests, since we will reject the null hypothesis if the test
statistic falls in the upper tail of the appropriate probability distribution. Similarly, we
could have a lower-tail hypothesis test if the alternative hypothesis is that the parameter of
interest is below a certain value. In this case, the null hypothesis would be rejected if the
test statistic falls in the lower tail of the appropriate probability distribution.

The final example is known as a two-tailed hypothesis test. The alternative hypothesis is
that the parameter of interest is not equal to some value, i.e. that it is either above or below
that value. The null hypothesis, as always, is that the parameter of interest is equal to a
specific value (in this case, we do not require an additional argument to show that this makes
sense). The rejection region is stated as |Ȳ − 5| > k, indicating that we will reject the null
hypothesis if the test statistic deviates from a specific value by more than a certain amount.

We will first discuss hypothesis tests where the sample we take is large, then we will consider
the case where the sample is small. Before we do that, we will define the two types of error
which can result from a hypothesis test.

Types of Error

1. A type I error is made if the null hypothesis is rejected when in fact the null
hypothesis is true. The probability of making a type I error is denoted by α:

α = P(reject null hypothesis when null hypothesis is true)

= P(test statistic lies in rejection region when null hypothesis is true)

2. A type II error is made if the null hypothesis is accepted when the alternative
hypothesis is true. The probability of making a type II error is denoted by β:

β = P(accept null hypothesis when alternative hypothesis is true)

= P(test statistic lies outside rejection region when alternative hypothesis is true)

Some statisticians (especially biostatisticians) will use the term power, which is defined as
1− β.
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7.3 Large Sample Hypothesis Tests

In this section, we will test hypotheses about the mean µ or proportion p of a population.
This includes the cases where we are interested in the difference between two populations.
We will take a large enough sample that we can assume (by the central limit theorem) that
the test statistic is normally distributed. Thus we can use the Z distribution (standard
normal) in our computations.

Let’s look at one-tailed hypothesis tests first. We will do an upper-tailed test, but this is
similar for lower-tailed tests. Suppose we have a parameter of interest θ (e.g. µ, p, or the
equivalent for the difference of two populations). We wish to test the alternative hypothesis
θ > θ0 (upper-tailed test), so the null hypothesis is θ = θ0. The test statistic is the estimator
θ̂, where we choose the appropriate estimator based on the parameter of interest. Since this
is an upper-tail test, the rejection region will be of the form θ̂ > k, where k will be chosen
later. Thus the parameters for the test are:

1. Alternative hypothesis, Ha : θ > θ0

2. Null hypothesis, H0 : θ = θ0

3. Test statistic, θ̂

4. Rejection region (RR), θ̂ > k

To determine the parameter k in the rejection region, we fix the level α of type I error
which we are willing to accept. If the null hypothesis is true, then the estimator θ̂ has a
normal distribution with mean θ0 and standard deviation σ ˆtheta. Since α is the probability
of incorrectly rejecting the null hypothesis when it is in fact true, we want to choose the
rejection region such that the probability that θ̂ ≥ k to be α. Converting to the standard
normal random variable, we want:

P(θ̂ ≥ k) = α

P

(
θ̂ − θ0

σθ̂
≥ k − θ0

σθ̂

)
= α

P
(
Z ≥ k − θ0

σθ̂

)
= α

Looking at the Z table, we choose zα such that P(Z ≥ zα) = α. (On our Z table, this is
equivalent to P(Z ≤ −zα) = α). Thus we have:

k − θ0

σθ̂
= zα

k = θ0 + zασθ̂

This is shown in the diagram below:
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θ0 k

α

Reject H0

Recall that σθ̂ is the standard deviation of the estimator, which is computed from the the
population standard deviation and the sample size. If we do not know the population
standard deviation, we can use the sample standard deviation S in place of the population
standard deviation σ since the sample size is large.

Example. You are a pollster who is interested in the voting preference in Rhode Island for
the gubernatorial election. The population of interest is the number of registered voters in
Rhode Island, and the parameter of interest is the p, the proportion of voters who support
Gina Raimondo. Suppose you sample 100 voters and 60 of them favor Raimondo. Does the
evidence support Raimondo being favored at a level of 0.05?

The parameters of the test are given above. The test statistic is p̂ = 0.6. To find the
appropriate rejection region at a level of α = 0.05 we need to find the appropriate value of
zα from the Z table. Looking at the table, we find that zα = 1.64 (we could also have chosen
1.65). We do not know the population standard deviation, but we can estimate it by using
p̂ in place of the true value p:

σθ̂ =

√
p(1− p)

n
≈
√
p̂(1− p̂)

n
=

√
(0.6)(0.4)

100
= 0.049

From this we calculate:

k = 0.5 + zασθ̂ = 0.5 + 1.64(0.049) = 0.58

Thus the rejection region is
{p̂ ≥ 0.58}

Since our test statistic is 0.6, it falls inside the rejection region, thus we can reject our null
hypothesis with a level of 0.05, so we are 95% confident that Raimondo is favored in the
population at large.

Similarly, we can do this for a two-tailed hypothesis test. Here we “split” the α between the
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upper and lower tails of the normal distribution.

P(|θ̂ − θ0| ≥ k) = α

P

(∣∣∣∣∣ θ̂ − θ0

σθ̂

∣∣∣∣∣ ≥ k

σθ̂

)
= α

P
(
|Z| ≥ k

σθ̂

)
= α

Splitting the α evenly between the upper and lower tails, we want

P
(
Z ≤ − k

σθ̂

)
= α/2

and

P
(
Z ≥ k

σθ̂

)
= α/2

In the same way as before, we can use the Z table to find the appropriate value of zα/2. Thus
we have:

k

σθ̂
= zα/2

k = zα/2σθ̂

Our rejection region is:
{|θ̂ − θ0| ≥ zα/2σθ̂}

The diagram below shows the rejection region for a two-tailed test in terms of the standard
normal Z distribution.

α/2α/2

-zα/2 zα/2

Reject H0 Reject H0

0

Let’s do our ball bearing example.

7



Example. You are a mechanical engineer and have designed a ball bearing machine which
produces ball bearings which are 5 mm in diameter. You suspect there might be something
wrong with the machine. You sample 64 ball bearings from the machine, and obtain a sample
mean of 4.98 mm and a sample standard deviation of 0.1 mm. Can you conclude at a level
of 0.95 that there is something wrong with the machine?
The parameters of the test are given above. The test statistic is Ȳ = 4.98. To find the
appropriate rejection region at a level of α = 0.05, since this is a two-sided hypothesis test,
we need to find the appropriate value of zα/2 from the Z table. Looking at the table, we find
that zα = 1.96. We do not know the population standard deviation, but we can estimate it
by using S in place of σ. The standard deviation of the estimator is therefore approximately:

σȲ ≈
S√
n

=
0.1√

64
=

0.1

8
= 0.0125

Thus our value of k is:
k = zα/2σȲ = 1.96(0.0125) = 0.0245

The rejection region is therefore:

{|Ȳ − 5| ≥ 0.0245} = {Ȳ ≤ 4.9755 or Ȳ ≥ 5.0245}

Since out test statistic does not fall within our rejection region, we do not reject the null
hypothesis, so for now you conclude that you do not have to do maintenance on the machine.

7.4 Large Sample Hypothesis Tests and Type II Error

We have discussed how to choose the rejection region based on the level of type I error we
are willing to accept. Now we will discuss type II error. We will only quantify type II error
for one-tailed hypothesis tests. For two-tailed tests, this process is arduous, thus will be
omitted. The discussion below will concern upper-tail hypothesis tests. Lower-tail tests are
similar, except everything is “flipped”.

Recall that a type II error is made if we accept the null hypothesis when in fact the null
hypothesis is false. In other words, our test statistic falls outside the rejection region, even
though the null hypothesis is false and should be rejected. When evaluating type II error,
we need to make an additional decision. We need to specify a specific value of the alterna-
tive hypothesis to be a positive test threshold (my own term) which we will use to compute β.

Let’s use the same upper-tail setup as before. Suppose we have a parameter of interest θ. We
wish to test the alternative hypothesis θ > θ0 (upper-tailed test), so the null hypothesis is
θ = θ0. The test statistic is the estimator θ̂, and the rejection region is of the form {θ̂ > k}.
For now, assume we have chosen k according to our desired α using the methods of the
previous section. To reiterate, our test has the following parameters:

1. Alternative hypothesis, Ha : θ > θ0

2. Null hypothesis, H0 : θ = θ0
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3. Test statistic, θ̂

4. Rejection region (RR), {θ̂ > k}

We will choose a specific value θa for the alternative hypothesis (our positive test threshold).
Since this is an upper tail test, we must have θa > θ0. Then β, the probability of a type II
error, is defined as the probability of accepting the null hypothesis when the true value of
the parameter is in fact θa.

It seems odd that we must specify a value for θa in order to do this, but this has a nice
interpretation. The probability of accepting the null hypothesis if the true parameter is θa
is β. If the true value of θ is greater than θa, the probability of accepting the null hypothesis
is less than β. Thus if the true value of θ is θa or greater, the probability that we will
incorrectly accept the null hypothesis is at most β.

Now that we’ve gotten that out of the way, how we we actually find β? Take a look a the
following picture:

θ0 θa
k

αβ

Reject H0
Accept H0

β is the probability that the test statistic lies outside the rejection region when the true
value of the parameter is θa. This time, the estimator has a normal distribution with mean
θa and standard deviation σθ̂. Thus, for the upper tail test here, we want the probability
that our test statistic is less than k, the threshold of the rejection region.

β = P(θ̂ ≤ k)

= P

(
θ̂ − θa
σθ̂

≤ k − θa
σθ̂

)

= P
(
Z ≤ k − θa

σθ̂

)
Since we know θa and σθ̂, and since we have already computed the boundary of the rejection
region k, we can use the Z table to solve for k
Let’s go back and do our polling example from above.
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Example. You are again a pollster who is interested in the voting preference in Rhode
Island for the gubernatorial election. The population of interest is the number of registered
voters in Rhode Island, and the parameter of interest is the p, the proportion of voters who
are Gina Raimondo supporters. You sample 100 voters and 60 of them favor Raimondo. You
create a hypothesis test with α = 0.05, for which we have seen that the rejection region is
{p̂ ≥ 0.58}. For a value of the alternative hypothesis pa = 0.60, calculate β, the probability
of a type II error.

Given our discussion above, plugging in the values we determined in the example above
(k = 0.58, σθ̂ = 0.049), and using pa = 0.60:

β = P
(
Z ≤ k − pa

σp̂

)
= P

(
Z ≤ 0.58− 0.60

0.049

)
= P(Z ≤ −0.41)

= 0.3409

7.5 Sample Size Selection

If you are a scientist devising a hypothesis test, you don’t want to just run the test and
calculate β after the fact the way we did in the example above. If you did that, β might
be too large, and your test could be meaningless! You would like a procedure where, if you
specify the maximum values of α and β you are willing to tolerate, you can compute the size
of the sample n you need to attain these values. Along the way, you will also compute k, the
threshold for the rejection region. The following derivation is for an upper-tail hypothesis
test. A similar derivation will work for a lower-tail test. The two-tailed test will not be
discussed.

For simplicity, we will do the computation for a hypothesis test involving the sample mean.
We can similarly do this for a hypothesis test involving the sample proportion. As an experi-
menter, you are conducting an upper tail hypothesis test with the following four parameters:

1. Alternative hypothesis, Ha : µ > µ0

2. Null hypothesis, H0 : µ = µ0

3. Test statistic, Ȳ

4. Rejection region (RR), {Ȳ > k}

In addition, you need to choose three more parameters:

1. θa, a specific value of the alternative hypothesis. As before, we require θa > θ0

2. α, the maximum type I error you are willing to accept
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3. β, the maximum type II error you are willing to accept

The population standard deviation is denoted σ. If we do not know σ, we can estimate it
by the sample standard deviation S. In the real world, to obtain S, we can do a pilot study
for the express purposes of computing S. We just need to make sure that the pilot study is
large enough that the S we obtain is a good estimator for σ.

As above, we will write the appropriate equations for α and β. Since we will have two
equations and only two unknowns (k and n), we can solve them for the unknowns. Using
the definition of α and referring to the picture above:

α = P(test statistic is in rejection region when null hypothesis is true)

= P(Ȳ ≥ k when µ = µ0)

= P
(
Ȳ − µ0

σ/
√
n
≥ k − µ0

σ/
√
n

)
= P(Z ≥ zα)

where zα is chosen from our Z-table so that P(Z ≥ zα) = α. Using the definition of β and
again referring to the picture above:

β = P(test statistic is outside rejection region when alternative hypothesis is true)

= P(Ȳ ≤ k when µ = µa)

= P
(
Ȳ − µa
σ/
√
n
≤ k − µa

σ/
√
n

)
= P(Z ≤ −zβ)

where zβ is chosen from our Z-table so that P(Z ≤ −zβ) = β. We use the negative sign
for convenience, since the value of z we are looking for will always fall to the left of 0 on
a graph of the standard normal distribution. We then have two equations we can solve
simultaneously:

k − µ0

σ/
√
n

= zα

k − µa
σ/
√
n

= −zβ

If we solve both equations for k, we get:

k = µ0 + zα
σ√
n

k = µa − zβ
σ√
n

We can use the first equation in the set above to find k, the boundary of the rejection region.
This is the same equation we derived in the section on large sample hypothesis tests. Setting

11



these two equations equal to each other:

µ0 + zα
σ√
n

= µa − zβ
σ√
n

(zα + zβ)
σ√
n

= µa − µ0

√
n =

(zα + zβ)σ

µa − µ0

n =
(zα + zβ)2σ2

(µa − µ0)2

7.6 p-values

The parameter α is the probability of making a type I error, i.e. rejecting the null hypothesis
when it is in fact true. Generally, experimenters choose small values of α to maximize their
confidence that a positive result is not a false positive, i.e. due to chance alone. Typical
values of α you will see in the scientific literature are 0.05 and 0.01, although this is a little
arbitrary.

Another way of reporting the probability of a type I error is the p-value. This is what is
most often given in the scientific literature.

p-value

The p-value, or attained significance level, of a test is the smallest level of significance α
for which the test statistic indicates that the null hypothesis should be rejected.

In other words, for any α greater than or equal to the p-value, the null hypothesis can be
rejected using the test statistic. For α less than the p-value, the null hypothesis cannot
be rejected. This provides more information than just saying that the null hypothesis was
rejected for a certain value of α. The following picture may be useful. It shows an upper-tail
hypothesis test, but this can be computed for any hypothesis test. The null hypothesis is
given by θ0, and the test statistic is θ̂.

θ0 θ

p-value

Reject H0
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Let’s look at our voter polling example from before.

Example. You are a pollster who is interested in the voting preference in Rhode Island
for the 2016 gubernatorial election. The population of interest is the number of registered
voters in Rhode Island, and the parameter of interest is the p, the proportion of voters who
support Gina Raimondo. Suppose you sample 100 voters and 60 of them favor Raimondo.
What is the p-value for this test? (It is a little confusing that p is the sample proportion
and we also have a p-value for the test, but this notation is standard in both cases; we will
write the p-value as “p-value” rather than just p to avoid this confusion).

We want the smallest value of α for which we will reject the null hypothesis. The value we
obtained for p̂ is 0.6. We estimated the standard deviation of the estimator p̂ as 0.049 above
(this include the factor of

√
n in the denominator). Thus we have:

p-value = P(p̂ ≥ 0.6 given null hypothesis is true)

= P(p̂ ≥ 0.6 given p = 0.5)

= P
(
p̂− 0.5

σp̂
≥ 0.6− 0.5

σp̂

)
= P

(
Z ≥ 0.1

0.049

)
= P(Z ≥ 2.04)

= 0.0207

Thus we have a p-value of 0.0207, which is the smallest value of α for which the test statistic
indicates that we can reject the null hypothesis. Above, we showed that we can reject the
null hypothesis with an α of 0.05. This is consistent with our p-value, since 0.05 is greater
than the p-value.

7.7 Small sample hypothesis testing for the population mean

In the previous section, we discussed hypothesis testing procedures for large samples. The
large sample assumption is important because that guarantees that the test statistic has a
normal distribution (by the central limit theorem). The large sample size also allows us to
estimate the population standard deviation using the sample standard deviation.

What happens when the sample size is not large? As in the section on confidence intervals, if
we have a population that is normally distributed with unknown standard deviation, we can
use the t-distribution in place of the Z distribution. Suppose we have a normally-distributed
population, and we take a small sample (n < 30) from that population. The population
standard deviation is unknown, so we estimate it with the sample standard deviation S.
Suppose we are are doing an upper-tailed hypothesis test. Let µ = µ0 be the null hypothesis,
and µ > µ0 be the alternative hypothesis. The test statistic is Ȳ , the standard unbiased
estimator for µ. Then to find the appropriate rejection region based on our desired level α,
we follow the same procedure above except that we use the t distribution with n − 1 df in
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place of the Z distribution. This works because

T =
Ȳ − µ0

S/
√
n

has a t distribution with n − 1 df. For example, if we are doing an upper-tail test with
desired level α, then the rejection region is given by:

k = µ0 + tασȲ

= µ0 + tα
S√
n

All we did to get this formula was replace the z with a t. We will return to our rocket science
example from the section on confidence intervals.

Example. You are a rocket scientist, and you conduct an experiment which involves mea-
suring the launch velocity of a model rocket. You claim that the launch velocity of the model
rocket is more than 29 m/s. Suppose 8 measurements are taken. The sample mean is 29.59
m/s, and the sample standard deviation is 0.391 m/s. Is the claim supported at the 0.025
level of significance?

This is an upper-tailed hypothesis test with the following parameters:

1. Alternative hypothesis, Ha : µ > 29

2. Null hypothesis, H0 : µ = 29

3. Test statistic, Ȳ

4. Rejection region (RR), {Ȳ > k}

We assume that the launch velocities are normally distributed (a normally distributed pop-
ulation is essential for use to use the t-distribution). For the rejection region, we have:

k = µ0 + tασȲ

= 29 + tα
S√
n

= 29 + t0.025
0.391√

8

= 29 + 2.365(0.138)

= 29.326

The rejection region is {Ȳ ≥ 29.326}. Since our measurement lies in the rejection region,
we can reject the null hypothesis with a level of 0.025. Thus the claim is supported at the
0.025 level of significance.
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7.8 Power of Hypothesis Tests

In the previous sections, we have discussed large-sample and small-sample hypothesis tests
for various test statistics. We learned how to specify a rejection region for a desired α and
how to compute β for a specific value of the alternative hypothesis. How did we decide on
those test statistics, and how do we know we selected the best rejection region. In other
words, how “good” are the tests?

So far, we have used the parameters α and β, the probabilities of type I and type II error,
to measure the “goodness” of a hypothesis test. Recall that to compute β we had to choose
a specific value for the alternative hypothesis θa. We would like a function which gives us
the error of the test given the true value of the parameter. The function we use is called the
power of a hypothesis test.

Power of a Hypothesis Test

Suppose we have a hypothesis test, with test statistic θ̂ and rejection region RR. Then the
power of the hypothesis test, denoted Power(θ) is the probability that the test statistic
θ̂ will lie in the rejection region if the true parameter value is θ, i.e.

Power(θ) = P(θ̂ lies in RR when true parameter value is θ)

The power function relates α and β in the following way. Suppose our null hypothesis is
θ0, and we have chosen the specific value θa for our alternative hypothesis. Let α be the
probability of a type I error, and let β(θa) be the probability of a type II error when the true
value is θa. Then we observe the following:

1. Power(θ0) = α since Power(θ0) is the probability of rejecting the null hypothesis when
it is true.

2. Power(θa) = 1− β(θa), since β(θa) is the probability of accepting the null hypothesis
when θa is true.

For an ideal test, the power function would be 0 at θ0 and 1 for all possible values of the
alternative hypothesis θa. Here is what this would look like graphically for a two-tailed
hypothesis test.
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θ

1

0

Power(θ)

θ0

No hypothesis test, however, is perfect. Realistically, the power curve for a two-tailed hy-
pothesis test will look more like this:

θ

1

0

Power(θ)

θ0

 α

What we would like is a test which maximizes the power function for a given α. This is
called the most powerful α-level test. Before we state the condition under which we have
such a test, we need one more set of definitions.

Simple and Composite Hypotheses

Suppose we have a random sample taken from a population with parameter θ, and
consider a hypothesis specifying the value of θ. If the hypothesis uniquely specifies the
distribution of the population, we call our hypothesis a simple hypothesis. Otherwise, we
call it a composite hypothesis.

Let’s look at examples of simple and composite hypotheses.
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Example. 1. Suppose we have a population which is normally distributed with mean µ
and variance 1. Since the distribution of the population is uniquely specified by µ, a
hypothesis involving µ such as the null hypothesis µ0 = 0, is a simple hypothesis.

2. Suppose we have a population which is normally distributed with mean µ and unknown
variance σ2. Here we need both µ and σ2 to specify the distribution of the population, so
a hypothesis involving µ such as the null hypothesis µ0 = 0, is a composite hypothesis.

3. Suppose we have a population with is exponentially distributed with parameter λ.
Then a hypothesis involving λ is a simple hypothesis since λ uniquely specifies the
distribution of the population. Since the population mean µ = 1/λ, a hypothesis
involving the mean µ is also a simple hypothesis.

Consider a hypothesis test where we are testing a simple null hypothesis θ = θ0 against a
simple alternative hypothesis θ = θa. We would like to choose a rejection region such that:

1. Power(θ0) = α

2. Power(θa) is as large as possible

In other words, we are looking for the most powerful α-level test. The following theorem
tells us how to derive the most powerful α-level test in this case.

Neyman-Pearson Lemma

Suppose we have a population whose distribution parameterized by θ. Suppose we have
a hypothesis test in which we wish to test the simple null hypothesis H0 : θ = θ0 against
the simple alternative hypothesis Ha : θ = θa. We do this by taking a random sample
Y1, . . . , Yn drawn from the population. Let L(Y1, . . . , Yn|θ) be the likelihood function for
the sample when the value of the parameter is θ. Then, for a given α, the test that
maximizes the power for the alternative hypothesis θa has a rejection region given by:

L(Y1, . . . , Yn|θ0)

L(Y1, . . . , Yn|θa)
< k

where the value of k is chosen so that the test has the desired α. The ratio of likelihood
functions is called a likelihood ratio. Such a test is the most powerful α-level test for H0

versus Ha.

Let’s look at an example application of this theorem.

Example. Suppose Y is a single observation from a population parameterized by θ with
probability density function

fθ(y) =

{
θyθ−1 0 < y < 1

0 otherwise
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Find the most powerful hypothesis test with α = 0.05 to test the null hypothesis H0 : θ = 2
against the alternative hypothesis Ha : θ = 1.

Since the distribution of the population is uniquely determined by the parameter θ, both
hypotheses are simple, so we can use the Neyman-Pearson lemma to derive the most powerful
test. Since there is only one sample, the likelihood ratio is given by:

L(Y |θ0)

L(Y |θa)
=
fθ0(Y )

fθa(Y )

=
2(Y )

1(Y 0)
= 2Y

So the rejection region is of the form 2Y < k, where we will determine k based on the desired
level α = 0.05. Dividing by 2, we get Y < k/2, and letting m = k/2, the rejection region is
of the form Y < m. We determine m based on the definition of α.

0.05 = α = P(Y lies in RR when the null hypothesis is true)

= P(Y lies in RR when θ = 2)

= P(Y < m when θ = 2)

=

∫ m

0

2ydy

= m2

Thus we have m2 = 0.05, so m =
√

0.05 = 0.2236. Thus the rejection region for the 0.05-most
powerful test is:

{Y < 0.2236}

In other words, among all hypothesis tests for H0 : θ = 2 versus Ha : θ = 1 based on a sample
size of 1 and α = 0.05, this test has the largest possible value for Power(θa) = Power(1).
Equivalently, this test has the smallest type II error given a sample size of 1 and α = 0.05 for
this specific pair of alternative and null hypotheses. What is the actual value of Power(1)
in this case. Using the definition of the power of a hypothesis test,

Power(1) = P(Y lies in RR when θ = 1)

= P(Y < 0.2236 when θ = 1)

=

∫ 0.2236

0

1dy

= 0.2236

The value 0.2236 is the maximum value of the power of the test among all tests with α = 0.05.
But for this test, β = 1− 0.2236 = 0.7764, which is very large. So this test is not very good.
However, no other test with these same parameters is any better.

What about our hypothesis tests from the previous section. It turns out that they are the
uniformly best hypothesis tests for the given situations. We give one example (without
proof) below.

18



Example. Suppose Y1, . . . , Yn are samples drawn from a normal distribution with unknown
mean µ and known variance σ2. We wish to test the null hypothesis H0 : µ = µ0 against the
alternative hypothesis Ha : µ > µ0. Then the α-most powerful test is given by Ȳ > k, where

k = µ0 + zα
σ√
n

This is the test statistic and rejection region we used earlier for large-sample hypothesis
testing. Thus our large sample hypothesis test using the Z-distribution is in fact the best
hypothesis test we can construct. The proof of this result is an application of the Neyman-
Pearson lemma. It is relatively straightforward, but the calculus and algebra are messy, so
we will omit that here.

7.9 Likelihood Ratio Tests

In the previous section, we learned how to construct the most powerful α-level test for simple
hypotheses. In this case, the distribution of the population is known except for the value of
a single parameter θ, and the null and alternative hypothesis are specified in terms of θ. The
Neyman-Pearson lemma shows us how to use a likelihood ratio test to construct the most
powerful α-level test.

In many cases, we are interested in testing hypotheses involving one parameter, but the
population has more than one unknown parameter. We have already encountered this in the
section on small-sample hypothesis tests for the mean of normally distributed populations
where the population variance is unknown. In this case, the parameter of interest is the
population µ. We don’t care about the unknown population standard deviation σ, so it is
called a nuisance parameter. We are also interested in cases where we do not have to choose
a specific value for the alternative hypothesis, like we did when we used the Neyman-Pearson
lemma. In both these cases (multiple unknown parameters and more complicated alternative
hypotheses), we can use a likelihood ratio test.

Here is the setup for a likelihood ratio test:

1. We have a population which is parameterized by a set of parameters Θ = (θ1, . . . , θn).
For example, if the population is normally distributed, it is parameterized by Θ =
(µ, σ).

2. We take a sample of size n of independent samples Y1, . . . , Yn from the population.

3. Given specific values of the parameters Θ = (θ1, . . . , θn), the likelihood function for
our sample is denoted L(Y1, . . . , Yn|Θ). For a normally distributed population, our
likelihood function will depend on Θ = (µ, σ).

4. The null hypothesis states that Θ lies in a particular set of values Ω0, where the alter-
native hypothesis states that Θ lies in another set of values Ωa, where Ω0 and Ωa must
be disjoint (it does not make sense otherwise). Note that the null and alternative hy-
potheses no longer need to be single points. They do not have to be simple hypotheses
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since they can contain unknown parameters or multiple values of a parameter. For
example, if we have a population which is exponentially distributed with parameter λ,
then if we want to test the null hypothesis H0 : λ = λ0 versus the alternative hypothesis
λ 6= λ0, then we would have Ω0 = {λ0} and Ωa = {λ > 0 : λ 6= λ0}.

5. The parameter space is defined to be Ω = Ω0 ∪ Ωa, which is all possible values of the
parameters. In the exponential example Ω = {λ > 0}, which is all possible values of
an exponential parameter.

6. We define:

L(Ω̂0) = max
Θ∈Ω0

L(Y1, . . . , Yn|Θ)

L(Ω̂) = max
Θ∈Ω

L(Y1, . . . , Yn|Θ)

We can think of L(Ω̂0) as the “best explanation” for the observed data given the null
hypothesis is true, i.e. Θ ∈ Ω0. L(Ω̂0) is the “best explanation” for the observed
data given all possible values of Θ. If L(Ω̂0) = L(Ω̂), then the “best explanation” of
the observed data is the null hypothesis, so we should accept the null hypothesis. If
L(Ω̂0) < L(Ω̂), the “best explanation” of observed data is found inside Ωa, and we
should consider rejecting the null hypothesis in favor of the alternative hypothesis.

7. A likelihood ratio test is based on the likelihood ratio L(Ω̂0)/L(Ω̂).

Likelihood Ratio Test

Given the setup above, define the likelihood ratio λ by

λ =
L(Ω̂0)

L(Ω̂)
=

maxΘ∈Ω0 L(Y1, . . . , Yn|Θ)

maxΘ∈Ω L(Y1, . . . , Yn|Θ)

A likelihood ratio test of the null hypothesisH0 : Θ ∈ Ω0 versus the alternative hypothesis
Ha : Θ ∈ Ωa has the likelihood ratio λ as a test statistic, and the rejection region is given
by {λ ≤ k}. The specific value of k is chosen so that α is a desired level. It can be shown
that 0 ≤ λ ≤ 1. A value of λ close to 0 indicates that the likelihood of the sample is
much smaller under H0 than Ha, which favors rejection of the null hypothesis.

The following example of a likelihood ratio test is presented without proof, and justifies
our t-test for small samples drawn from a normally distributed population with unknown
variance.

Example. Suppose Y1, . . . , Yn are samples drawn from a normal distribution with unknown
mean µ and unknown variance σ2. In this case, n is small. We wish to test the null hypothesis
H0 : µ = µ0 against the alternative hypothesis Ha : µ > µ0. Then if we use the likelihood
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ratio test described above, we obtain a hypothesis test with test statistic Ȳ and rejection
region Ȳ > k. The value is k is given by

k = µ0 + tα
S√
n

where S is the sample standard deviation computed from our unbiased estimator for the
sample variance. Thus the likelihood ratio test for this scenario is exactly the t-test we
discussed earlier. The proof of this is several pages of messy calculus and algebra, and will
be omitted.

Unfortunately, in most cases, the likelihood ratio does not give us a known distribution such
as the t-distribution. It can be shown that in cases where the sample size is large and the
underlying distribution is “nice” (this is intentionally vague, but covers many real-world
cases), the likelihood ratio λ has a chi-square distribution, thus we can construct hypothesis
tests using likelihood ratios.

Chi-Square Likelihood Ratio Test

Take n samples Y1, . . . , Yn from a population parameterized by Θ = (θ1, . . . , θk). Let

L(Θ) = L(Y1, . . . , Yn|Θ)

be the likelihood function, and let λ be the likelihood ratio as computed above. Let r0

be the number of free parameters (parameters in the vector Θ which are not specified)
in the null hypothesis H0 : Θ ∈ Ω0, and let r be the number of free parameters in
Ω = Ω0 ∪ Ωa. Then the large n, the test statistic −2 log(λ) has an approximately chi-
square distribution with r0 − r degrees of freedom (df). (This is the natural logarithm,
sometimes written as ln). Since there is a negative sign in front of the test statistic, the
rejection region is given by:

−2 log(λ) > χ2
α

where χ2
α is found in the chi-square table based on r − r0 df.

Let’s do one final example using this likelihood ratio test.

Example. Suppose you are the quality control engineer for the ACME widget factory, and
you wish to compare the number of defective widgets produced per day by two different
factories. You observe the number of defective widgets produced per day by each factory
for 100 days and find sample means X̄ = 20 and Ȳ = 22 for the two factories. Assume the
number of defective widgets produced per day by the first factory is a Poisson distribution
with parameter θ1 and the number of defective widgets produced per day by the second
factory is a Poisson distribution with parameter θ2. Use the likelihood ratio test to test
H0 : θ1 = θ2 versus Ha : θ1 6= θ2 with level α = 0.01.

Let X1, . . . , Xn be the number of defective widgets from days 1 to n from the first factory, and
let Y1, . . . , Yn be the same for the second factory. In this problem, n = 100. The population
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parameter is Θ = (θ1, θ2). The null hypothesis is Ω0 = {(θ1, θ2) : θ1 = θ2 = θ), where θ is
unknown. Then the likelihood function is the product of all the Poisson pmfs.

L(θ1, θ2) = L(Y1, . . . , Yn|θ1, θ2)

=
100∏
i=1

e−θ1θXi
1

Xi!

100∏
i=1

e−θ2θYi2

Xi!

=
1

k
θ
∑
Xi

1 e−nθ1θ
∑
Yi

2 e−nθ2

where k = X1! · · ·Xn!Y1! · · ·Yn! and n = 100. First, we compute the maximum likelihood
under the null hypothesis, i.e. where θ1 = θ2. In this case, the likelihood function is a
function of a single parameter θ:

L(θ) =
1

k
θ
∑
Xi+

∑
Yie−2nθ

This is the likelihood function for a Poisson random variable with parameter θ. We have 2n
samples X1, . . . , Xn, Y1, . . . , Yn. Since the mean of the Poisson random variable is the same
as its parameter θ, the maximum likelihood estimator (MLE) for θ is just the sample mean
of these 2n samples. (The MLE for the population mean is always the sample mean). So
L(θ) is maximized at the MLE:

θ̂ =
1

2n

(
n∑
i=1

Xi +
n∑
i=1

Yi

)
=

1

2
(X̄ + Ȳ )

Thus the maximum of the likelihood function for the null hypothesis is:

L(Ω̂0) =
1

k
θ̂
∑
Xi+

∑
Yie−2nθ̂

=
1

k
θ̂nX̄+nȲ e−2nθ̂

Our alternative hypothesis is Ωa = (θ1, θ2) : θ1 6= θ2, so for our parameter space Ω we have
Ω = (θ1, θ2) : θ1, θ2 > 0. The likelihood function L(θ1, θ2) on Ω is maximized when both
θ1 and θ2 are equal to their maximum likelihood estimators, which are Ȳ1 and Ȳ2, thus the
maximum of L(θ1, θ2) over Ω is given by:

L(Ω̂) =
1

k
X̄

∑
Xie−nX̄θȲ2 e

−nȲ

Taking the likelihood ratio gives us:

λ =
L(Ω̂0)

L(Ω̂)

=
1
k
θ̂nX̄+nȲ e−2nθ̂

1
k
X̄

∑
Xie−nX̄θȲ2 e

−nȲ

=
θ̂nX̄+nȲ

X̄nX̄ + Ȳ nȲ
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For this specific problem, n = 100, X̄ = 20, Ȳ = 22, and θ̂ = 1
2
(X̄ + Ȳ ) = 21. Thus the

observed value for λ is:

λ =
21100(20+22)

20(100)(20) + 22(100)(22)

This has lots of annoying large exponents, but we only care about the log of this.

−2 log(λ) = −2[4200 log(21)− 2000 log(20)− 2200 log(22)] = 9.53

This quantity has a χ2 distribution. The number of free parameters in Ω = (θ1, θ2) : θ1, θ2 > 0
is 2, since we know neither θ1 nor θ2. The number of free parameters in Ω0 = {(θ1, θ2) : θ1 =
θ2 = θ) is only 1. Thus −2 log(λ) has a χ2 distribution with 2 − 1 = 1 degrees of freedom
(df). Looking at the chi-square table, we see that χ2

0.01 = 6.635 for 1 df. The rejection region
is thus:

−2 log(λ) > 6.635

Since our value of −2 log(λ) = 9.53 lies inside the rejection region, we will reject the null
hypothesis at a significance level of 0.01, thus we conclude that the number of defective
widgets produced by the two factories is indeed different.
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