
8 Additional Topics

8.1 Sampling from Probability Distributions

We will first talk about how to generate samples from a probability distribution. Why is
this useful? Suppose we wish to simulate a radioactive decay process on a computer. A
reasonable model for the times between subsequent decays of our radioactive isotope is the
exponential distribution. Thus we need to be able to generate samples from an exponential
distribution. For common distributions, such as the exponential distribution, there are built-
in routines in Matlab or SciPy (python) to do this. It is useful, however, to know how this
works since many times the distribution you want to sample does not have a built-in routine.

For simplicity, we will only discuss sampling from continuous random variables. The same
ideas work for discrete random variable, with a few alterations. We will also assume that
we have a method for generating samples from the Uniform[0, 1] distribution. This is a very
interesting problem, and there are many ways to do it, most of which are not straightforward.
If you find this interesting, the topic is discussed in courses on computational probability and
in some computer science courses. We will discuss two methods of sampling from probability
distributions: the inverse CDF method and rejection sampling.

8.1.1 Inverse CDF method

Suppose we have a population whose distribution is characterized by a CDF F (y). Recall
that for a random variable Y , the CDF is defined as F (y) = P(Y ≤ y). We would like to
generate samples from the population. The inverse CDF method works as follows:

1. Generate U , a sample from the Uniform[0, 1] distribution.

2. Let Y be the largest number x such that F (x) ≤ u. If the CDF F (y) is strictly
increasing, then F (y) is invertible so we can let Y = F−1(U).

It is perhaps easier to see this on a picture. This is an example of the inverse CDF method
used on a population which has a exponential distribution with parameter λ = 1.
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Why does this work. For simplicity, let’s consider only the case where the CDF F (y) is
invertible. (Invertibility of the CDF is not required; in particular, it works for discrete
random variables, whose CDF is not invertible). Let U ∼ Uniform[0, 1]. Then we claim the
distribution of F−1(U) is F . To see this, we look at the CDF of F−1(U).

P(F−1(U) ≤ y) = P(U ≤ F (y))

= F (y)

where we used the fact that for a Uniform[0, 1] random variable U , the CDF is P(U ≤ u) = u
for u ∈ [0, 1].

Now that we’ve seen the picture, let’s use the inverse CDF method to sample from an
exponentially distributed population.

Example. Suppose we have a population which has an exponential distribution with pa-
rameter λ. Let U be a Uniform[0, 1] random variable. Use the inverse CDF method to
generate a sample from the population in terms of U .

First we need to find the CDF for the population. Integrating the density function from 0
to y:

F (y) =

∫ y

0

λe−λtdt

= e−λt
∣∣∣0y

= 1− e−λy

With appropriate bounds, the CDF is:

F (y) =

{
1− e−λy y ≥ 0

0 otherwise

The CDF F (y) is strictly increasing, it has an inverse. Since we want Y = F−1(U), we take
F (Y ) = U and solve for Y .

1− e−λY = U

e−λY = 1− U
−λY = log(1− U)

Y = −1

λ
log(1− U)

For the exponential distribution this is very straightforward. In general this method works
if we can easily compute the CDF. For continuous distributions, if the integral of the density
has a nice closed form (as in the exponential case), the inverse CDF method usually works
very well. For discrete distributions, this method also works well since to find the discrete
CDF, all we have to do is add up the probabilities of the appropriate simple events. For cases
where the CDF does not have a closed form (such as the normal distribution) or cases where
the CDF is hard to invert, this method is not so good. For many of those cases, rejection
sampling is the way to go.
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8.1.2 Rejection Sampling

Rejection sampling is based on the “dartboard principle”. Here’s how it works. Imagine you
have a continuous probability density function f(x) you wish to sample from. Furthermore,
imagine that the density function is nonzero only on the interval [a, b]. Put the density
function on a rectangular dartboard. The bounds of the dartboard are from a to b in the
x-direction and from 0 to M in the y-direction, where M is the maximum of f(x) on [a, b]1.
Here is an example of a possible dartboard.

a b

f(y)

M

0

Now throw darts uniformly at the dartboard until your dart lands under the density curve
f(x). In other words, reject all darts which do not land under the density curve (this is
why we call this rejection sampling). Then your dart will be uniformly distributed in the
region between the x-axis and the density curve, and the x-coordinate of your dart will be
distributed according to the density f(x). Intuitively, this works since there is more room
on the board for (nonrejected) darts to land where the density curve is highest, i.e. where
the probability density is greatest.

Let’s show mathematically that this actually works. We have all the tools we need from the
section on multivariate distributions! Let (X, Y ) be the position of a nonrejected dart. Then
the pair (X, Y ) is uniformly distributed on the region between the x-axis and the density
curve. Since we are assuming that the density f(x) is zero outside [a, b], the area of the

region is
∫ b
a
f(x)dx = 1 since f(x) is a probability density function. Since the joint density

function of a uniform distribution is the reciprocal of the area of the region, for our joint
density function we have joint density:

f(x, y) =

{
1 a ≤ x ≤ b, 0 ≤ y ≤ f(x)

0 otherwise

We claim the marginal density of X is the density f(x). To see this, all we have to do is

1Recall that a continuous function has an absolute maximum on a closed interval [a, b] and that density
functions are nonnegative; thus this rectangular dartboard will have finite size.
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integrate the joint density in y.

fX(x) =

∫ f(x)

0

1dy

= y
∣∣∣f(x)
0

= f(x)

Thus the rejection sampling method produces works as advertised. There are a few disad-
vantages to the method, however. First, we need to have a bounded region for the density
function. Many useful probability distributions, such as the normal distribution, are un-
bounded. To use rejection sampling for the standard normal distribution, for example, we
have to impose artificial bounds on the density. For example, we could impose the bounds
[-5, 5]. Since the probability is exceedingly low that a sample will be more than 5 standard
deviations from the mean, this is not too unreasonable; it is important, however, to know
that in doing this we are reducing the probability of extreme outliers to 0, which may not
be what we want to do, especially if we are taking large numbers of samples. In addition,
depending on the shape of the density function, we might have to throw many darts in order
for one to not be rejected. This presents no problem theoretically, but might be a prob-
lem computationally. Take a look at the following picture of the standard normal density
between -5 and 5.
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From the picture, the area of the rectangular dartboard is approximately 4, and the area
under the curve is approximately 1, since f(x) is a probability density function. Thus we
expect only 1/4 of our darts to be accepted, so we will have to throw on average 4 darts to
get a single sample.

One way around this computation inefficiency is to note that the x-position of our darts does
not have to be uniform. In fact, it makes sense to select the x-position of our darts accord-
ing to a density function g(x) which is similar to the one we are trying to simulate and is
easy to take samples from. We can think of this as throwing darts at a non-square dartboard.

Once again, suppose we are trying to generate a sample from a probability density function
f(x), where f(x) is zero outside a closed interval [a, b]. Suppose we can generate samples
from another probability density function g(x), either using the inverse CDF method or some
other method. The function g(x) will give us the shape of our dartboard. For this to work,
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the function f(x) must fit entirely on our dartboard. To make this happen, we scale g(x)
(if needed) by a constant factor M so that f(x) ≤ Mg(x) for all x ∈ [a, b]. We now throw
darts uniformly at this dartboard.

At this point, the dartboard analogy breaks down a bit, and it is easier to just give the
algorithm.

1. Choose Y uniformly from the interval [0, 1].

2. Choose X according to probability density g(x).

3. If Y ≤ f(X)/Mg(X), then accept the sample (X, Y ). X is then the desired sample
from the distribution f(x).

4. Otherwise reject the sample and repeat from step 1.

Mathematically, why does this work. The proof uses Bayes’ theorem. Let A be the event that
the sample is accepted. Then by Bayes’ theorem (fudging a little because density functions
are not exactly probabilities but are close enough),

P(X = x|A) =
P(A|X = x)P (X = x)

P(A)

Since Y is a uniform random variable on [0, 1],

P(A|X = x) = P
(
Y ≤ f(x)

Mg(x)

)
=

f(x)

Mg(x)

where we used the density of the uniform random variable on [0, 1]. The probability P(X =
x) = g(x), since X is chosen according to density function g(x). As mentioned above, this
is not quite accurate since densities are not really probabilities, but this is good enough for
our purposes. By the Law of Total Probability for continuous random variables (essentially
the same as the discrete case, except we replace summation with integration),

P(A) =

∫ b

a

P(A|X = x)P(X = x)dx

=

∫ b

a

f(x)

Mg(x)
g(x)dx

=
1

M

∫ b

a

f(x)dx

=
1

M
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where we used the fact that f(x) is a density function, thus integrates to 1 over the interval
[a, b]. Thus the probability of accepting a sample is 1/M . Putting all of this together,

P(X = x|A) =
P(A|X = x)P (X = x)

P(A)

=

f(x)
Mg(x)

g(x)
1
M

= f(x)

Thus the rejection sampling method produces a sample which is distributed according to
the desired distribution f(x). The probability of accepting a sample is 1/M . Thus if we
treat the rejection sampling procedure as a sequence of Bernoulli trials with probability of
success, then on average it should take M trials for a sample to be accepted. (We model
the number of trials needed for the first success as a geometric random variable, and use the
formula for the expected value of a geometric distribution.)

8.2 Monte Carlo Methods

Rejection sampling is an example of a Monte Carlo method. Monte Carlo methods are a
class of computational algorithms where numerical results are obtained by repeated random
sampling. In rejection sampling, we sample repeatedly from a probability distribution until
the sample is accepted, then the x-coordinate of the accepted sample is the value we seek.
Let’s look at Monte Carlo techniques more generally, and then apply them to numerical
integration.

There is no standard definition of Monte Carlo methods. In general, the idea is to approx-
imate an expected value with the sample mean of simulated random variables. Ideally, the
expected value is a probability, an integral, or something else you care about. Consider a
random variable X having probability density function f(x) defined on the interval [a, b].
Let g(x) be a real-valued function of x. Then we can compute the expected value of g(X)
using the formula we learned in class in the continuous random variable section:

E(g(X)) =

∫ b

a

g(x)f(x)dx

Now let’s take a sample of n random variables X1, . . . , Xn from the density f(x) and compute
the sample mean of g(X1), . . . , g(Xn), which we will call ḡn, where the subscript n denotes
the number of samples we took.

ḡn =
1

n

n∑
i=1

g(Xi)

Taking the expected value of ḡ, we get:

E(ḡn) =
1

n

n∑
i=1

E(g(Xi))

= E(g(X))
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since all the Xi have the same distribution. Thus ḡn is an unbiased estimator for the expected
value E(g(X)). This is called the Monte Carlo estimator. As long as the variance of g(X) is
finite2, then this is a consistent estimator for g(X). Thus by the Law of Large Numbers, the
Monte Carlo estimator ḡn converges to the expected value E(g(X)) in probability as n→∞.
We can use Monte Carlo techniques for numerical integration. We will give two Monte Carlo
methods, the first based on a dartboard and second based on our Monte Carlo estimator
which we defined above.

Suppose we want to integrate a function f(x) from a to b. Let’s throw n darts uniformly
at the same rectangular dartboard we used above, and let Y be the number of darts which
land under the curve. Then Y ∼ Binomial(n, p), where p is the probability of a dart landing
under the curve. The probability that a dart lands under the curve is the ratio of the area
of the curve to the area of the rectangle, i.e.

p =

∫ b
a
f(x)dx

M(b− a)

Let p̂n = Y/n be the unbiased estimator for p, where the subscript n denotes the number of
darts thrown. We know from the section on estimation that p̂n is a consistent estimator for
p, i.e. p̂n converges to p (in probability) as n→∞. By linearity,

M(b− a)p̂n = M(b− a)
Y

n

is an unbiased estimator for
∫ b
a
f(x)dx and converges to

∫ b
a
f(x)dx in probability as n→∞.

Thus we can estimate the integral by M(b − a)Y
n

. It is easy to compute this, since all we
have to do is generate uniform points in the rectangle and verify that the y-coordinate lies
under the curve.

Just as we did above in the case of sampling from probability distributions, Monte Carlo
integration does not require that samples be chosen uniformly in a rectangle, i.e. we don’t
have to use a “dartboard” to do it. Why might it be useful to use a different approach? Sup-
pose we want to integrate the standard normal density function from -5 to 5. If we enclose
that in a rectangular dartboard and throw darts uniformly at random, many of the darts
will lie in the region of the tails of the normal distribution where there is very little area.
It makes sense that for a good estimate of the are under the curve, darts thrown near the
center “matter” more than darts thrown to the edges since there is more area there. Thus
it might be a good idea to throw darts whose x-coordinate distributed such that more darts
hit the center than the edges of the dartboard. This idea is called importance sampling. The
algorithm is based on our Monte Carlo Estimator for expected values.

Let f(x) be a continuous function, and suppose we want to estimate the integral
∫ b
a
f(x)dx.

Let g(x) be any probability density function defined on [a, b]. Take n independent samples
X1, . . . , Xn using the density g(x) (this can be done with inverse CDF, rejection sampling,

2It suffices for E(g(X) to be finite, but that is beyond the scope of this course.
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or any other method). Then the following is an unbiased estimator for
∫ b
a
f(x)dx:

În =
1

n

n∑
i=1

f(Xi)

g(Xi)

What is the expected value of this estimator? Since the Xi are distributed according to
g(x), using linearity of expectation and the formula for the expected value of a function of
a random variable,

E(În) =
1

n

n∑
i=1

E
(
f(Xi)

g(Xi)

)
=

1

n

n∑
i=1

∫ b

a

f(x)

g(x)
g(x)dx

=
1

n

n∑
i=1

∫ b

a

f(x)dx

=

∫ b

a

f(x)dx

Thus În is unbiased. By the Law of Large Numbers, as n→∞, the estimator În converges
to the integral

∫ b
a
f(x)dx (in probability). Thus În is a consistent estimator for the integral∫ b

a
f(x)dx.

8.3 Linear Regression

Linear regression is one of the mathematical methods most often used by professional statis-
ticians. Linear regression is an inferential procedure which is used when one random variable
Y , called the dependent variable, has a mean which is a function of one or more nonrandom
variables x1, . . . , xn, called the independent variables. (The names “dependent” and “inde-
pendent” are used in the scientific sense to indicate the roles the variables play, and do not
imply anything about independence in the probabilistic sense.) What are some examples of
this?

1. Y is the stopping distance for an automobile of a particular make and model. Y is a
random variable, but its mean depends on the velocity x of the car before the brakes
are applied.

2. Y is the elongation of a strip of metal subject to a stretching force. Y is a random
variable whose mean depends on the applied foce x1 and the temperature x2.

3. Y is the sale price of homes in a certain neighborhood over the past month. Y is a
random variable whose mean depends, among other things, on x, the size of the home
in square feet.

In this section we will only consider a single independent variable x. Consider a scatterplot
of n samples of the random variable Y corresponding to n values of the independent variable
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x. We could, for example, plot home prices in a certain neighborhood versus the size of
the home. Intuitively, you would expect that Y would roughly increase as x increases, since
bigger homes are more likely to sell for more. A purely deterministic, linear model, which
we can write as

Y = β0 + β1x

cannot possibly fit the data, because that would imply that all the points lie exactly on a
straight line. Instead, we will use a probabilistic model which says that the data lies along
a straight line, but that there is random error involved so that the points do not lie exactly
along the line. This model would look like:

Y = β0 + β1x+ ε

where ε is a random variable modeling the error in the problem. The distribution of ε is
unknown, but we will take it to have mean 0 and variance σ2. It is often useful (and in many
cases quite accurate) to take ε to have a normal distribution. Since E(ε) = 0, the expected
value of Y is

E(Y ) = β0 + β1x

since everything other than ε is a constant. Thus, although Y itself does not fall on a straight
line, its expected value does.

A linear statistical model models the expected value E(Y ) as a linear function of one or
more unknown parameters β0, β1, . . . , βn. Note that the word linear refers to the fact that
E(Y ) is a linear function of the parameters βi. E(Y ) is not necessarily a linear function
of the independent variables. If we like, to make this clear we could write the model as
E(Y ) = xβ1 + β0, to show that the independent variable plays the role of the coefficient
here. We shall consider here only simple linear regression models, ones in which E(Y ) is a
linear function of only two unknown parameters β0 and β1. The following are all examples
of simple linear regression models:

E(Y ) = β0 + β1x

E(Y ) = β0 + β1x
2

E(Y ) = β0 + β1
√
x

E(Y ) = β0 + β1 log(x)

In all the above cases, E(Y ) is a linear function of the unknown parameters. The thing
involving the independent variable x is merely the coefficient of β1. We can do whatever we
want (take a power, root, log, exponential, etc) to the independent variable x since its values
are always known. A multiple linear regression model is still a linear function of unknown
parameters, but we have more than two unknown parameters. The following are examples
of multiple linear regression models with three unknown parameters:

E(Y ) = β0 + β1x1 + β2x
2

E(Y ) = β0 + β1x+ β2x
2
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Recall that the independent variables are the coefficients of the linear model. In the first
case, the coefficients are x and x2, which are two powers of the same independent variable.
In the second case, the coefficients are two different independent variables. We will only
concern ourselves with simple linear regression models here.

The parameters β0 and β1 are population parameters which are unknown. We will use the
method of least squares to estimate these parameters. Roughly, this is what we are doing.
Y represents a measurement from a population whose distribution is unknown, but whose
expected value depends on an independent, nonrandom variable x via a simple linear regres-
sion relationship E(Y ) = β0 +β1x with unknown parameters β0 and β1. We will estimate β0
and β1 in the following way. Take n samples Y1, . . . , Yn from the population, along with their
corresponding values of x1, . . . , xn. In our real estate example, we select n homes. Their sale
price corresponds to the Yi, and their size corresponds to the xi. In the automobile braking
example, we select n different velocities xi and measure the braking distance Yi correspond-
ing to each one. In all cases, we have n ordered pairs (xi, Yi). Plot these on a graph, and
draw the “best-fit” straight line (you can just eyeball this!) The y-intercept and slope of this
“best-fit” line are our estimators β̂0 and β̂1 for the population parameters β0 and β1.

Our estimator for the unknown parameters is nothing more than the “best-fit” line, which
we are familiar with from high school science class! Since we want to quantify how good the
estimators are, the “eyeball method” is not good enough. We need a method to mathemat-
ically construct the best-fit straight line through a set of points. This method is known as
the method of least squares, and is the method used by Microsoft Excel and other software
packages to do this.

8.3.1 Method of Least Squares

Suppose we have n points (xi, yi), and we wish to fit the best possible straight line to them.
Since this is an estimator, we will denote the best possible straight line by

ŷ = β̂0 + β̂1x

In the “eyeball method”, we want to make the line as close as possible to all the points.
Mathematically, here’s what we do. The x-value xi corresponds to the observed y-value yi.
If we plug xi into our linear model, we get our estimated y-value:

ŷi = β̂0 + β̂1xi

For xi, the deviation of the observed value from the estimated value, called the error, is
yi − ŷi. We want to minimize the sum of square errors (SSE) of the n samples. That is, we
want to find the values of β̂0 and β̂1 that minimize:

SSE =
n∑
i=0

(yi − ŷi)2 =
n∑
i=0

[
yi − (β̂0 + β̂1xi)

]2
To do this requires multivariable calculus. (We could also do the minimization numerically,
using the method of gradient descent). Essentially, we take the partial derivatives with
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respect to both β̂0 and β̂1, set them equal to 0, and solve the resulting equations for the
two parameters. The algebra is lengthy and so the details will be omitted; if you like you
can work through them or look up the calculations in any book on statistics. The result is
presented in the box below.

Least Squares Estimators for Simple Linear Regression

Suppose that a random variable Y and a nonrandom variable x are related by a linear
regression model:

E(Y ) = β0 + β1x

Take n samples (x1, y1), . . . , (xn, yn). Then the least squares estimators of the parameters
β0 and β1 are

β̂1 =
Sxy
Sxx

β̂0 = ȳ − β̂1x̄

where x̄ and ȳ are the sample means of the two variables, and

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ)

Sxx =
n∑
i=1

(xi − x̄)2

Calculating these estimators is sufficiently annoying that it should only be done on a com-
puter! If you have studied linear algebra, there is actually a nice form for these involving
matrix multiplication. Instead of doing an example (by hand) of a least squares regression,
we will instead discuss properties of these estimators such as bias and variance.

8.3.2 Properties of Least Squares Estimators

Recall the model that we are using for simple linear regression. Y is a random variable whose
value depends on an independent variable x with a degree of error given by ε.

Y = β0 + β1x+ ε

The error ε has mean 0 and variance σ2. In particular, we assume that the variance of the
error does not depend on the independent variable x. Thus the expected value of Y is a
linear function of x:

E(Y ) = β0 + β1x

We will show that the least squares estimators β̂0 and β̂1 are unbiased estimators of the
parameters β0 and β1. To form our estimators, recall that we took n samples Y1, . . . , Yn from
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the population. To each sample we have a corresponding value for the independent variable
x1, . . . , xn. The dependent variable Yi and the independent variable xi are related according
to our model:

Yi = β0 + β1xi + εi

where εi is the value of the error for the ith sample (xi, Yi). The errors εi are independent
and have the same distribution as ε. Since the expected value of εi is 0, note that

E(Yi) = β0 + β1xi

Since β0 + β1xi is a constant and thus adding it does not affect variance, the variance of Yi
is given by

V ar(Yi) = V ar(εi) = σ2

First let’s find the bias of β̂1. We can simplify the expression for β̂1 as follows3:

β̂1 =
Sxy
Sxx

=

∑
(xi − x̄)(Yi − Ȳ )

Sxx

=

∑
(xi − x̄)Yi − Ȳ

∑
(xi − x̄)

Sxx

=

∑
(xi − x̄)Yi
Sxx

since
∑

(xi − x̄) = nx̄− nx̄ = 0. Using linearity of expectation, we take the expected value

of β̂1:

E(β̂1) = E
[∑

(xi − x̄)Yi
Sxx

]
=

∑
(xi − x̄)E(Yi)

Sxx

=

∑
(xi − x̄)(β0 + β1xi)

Sxx

= β0

∑
(xi − x̄)

Sxx
+ β1

∑
(xi − x̄)xi
Sxx

Note that
∑

(xi − x̄) = 0 and

Sxx =
∑

(xi − x̄)2

=
∑

(x2i − xix̄− xix̄+ x̄2)

=
∑

(xi − x̄)xi − x̄
∑

(xi − x̄)

=
∑

(xi − x̄)xi

3Since all sums are from 1 to n, we will omit the indexes on the sum for simplicity.
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since the second sum in the second-to-last line is 0. Plugging these into the expression for
the expected value of β̂1, we obtain:

E(β̂1) = 0 + β1
Sxx
Sxx

= β1

Thus β̂1 is an unbiased estimator for β1. To compute its variance, we use the formula for the
variance of a sum of independent random variables, together with the facts that a constant
is squared when it is pulled out.

V ar(β̂1) = V ar

[∑
(xi − x̄)Yi
Sxx

]
=

1

S2
xx

∑
V ar [(xi − x̄)Yi]

=
1

S2
xx

∑
(xi − x̄)2V ar(Yi)

Since Yi = β0+β1xi+εi and the variance of εi is σ2, V ar(Yi) = σ2, since β0+β1xi is constant
thus does not affect the variance. Putting all this together, we have:

V ar(β̂1) =
1

S2
xx

σ2
∑

(xi − x̄)2

=
Sxx
S2
xx

σ2

=
σ2

Sxx

Since β̂1 is unbiased, its mean squared error (MSE) is equal to its variance.

Let’s do the exact same thing for the other estimator β̂0. Recall that β̂0 = Ȳ − β̂1x̄. By
linearity of expectation,

E(β̂0) = E(Ȳ − β̂1x̄)

= E(Ȳ )− x̄E(β̂1)

= E(Ȳ )− β1x̄

where we used the result from above. All we need to do is compute the expected value
of Ȳ . Since our model is more complicated than in the one in the sampling distribution
section (i.e. Y depends on the independent random variable x as well as the random error
ε), this expected value is not just the population mean. By linearity of expectation, using
the expected value of Yi which we found earlier,

E(Ȳ ) =
1

n

∑
E(Yi)

=
1

n

∑
(β0 + β1xi)

= β0 + β1
1

n

∑
xi

= β0 + β1x̄
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Plugging this in above, we get:

E(β̂0) = β0 + β1x̄− β1x̄ = β0

Thus β̂0 is an unbiased estimator for β0.

Now we find its variance. This is a little trickier since Ȳ and β̂1 are not necessarily indepen-
dent. Recalling that the general form for the variance of a sum involves the covariance,

V ar(β̂0) = V ar(Ȳ − β̂1x̄)

= V ar(Ȳ ) + V ar(−x̄β̂1) + 2Cov(Ȳ ,−x̄β̂1)
= V ar(Ȳ ) + x̄2V ar(β̂1)− 2x̄Cov(Ȳ , β̂1)

where we used the fact that constants are squared when they are pulled out of the variance,
but are pulled out without alteration from the covariance. We computed the variance of β̂1
above. Since the samples Yi are independent, the variance of Ȳ is given by:

V ar(Ȳ ) =
1

n2

∑
V ar(Yi) =

σ2

n

where we used the fact that V ar(Yi) = σ2, which we derived above. Finally we compute the
covariance of Ȳ and β̂1. Here we use the fact that the covariance is linear in each argument,
i.e.

Cov

(
n∑
i=1

Xi,
m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi, Yj)

This can be shown using the definition of covariance or using the Magic Covariance Formula.
Thus we have:

Cov(Ȳ , β̂1) = Cov

(
1

n

∑
Yi,

1

Sxx

∑
(xi − x̄)Yi

)
=

1

nSxx

∑
i

(xi − x̄)Cov(Yi, Yi) +
1

nSxx

∑
i

∑
j 6=i

(xj − x̄)Cov(Yi, Yj)

=
1

nSxx

∑
i

(xi − x̄)V ar(Yi)

since Cov(Yi, Yj) = 0 for i 6= j by independence of the samples Yi, and Cov(Yi, Yi) = V ar(Yi).
Since we know that the variance of Yi is σ2, this becomes:

Cov(Ȳ , β̂1) =
1

nSxx

∑
i

(xi − x̄)V ar(Yi)

=
σ2

nSxx

∑
i

(xi − x̄) = 0
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So the covariance of Ȳ and β̂1 is 0, which is really convenient! Note that this does not imply
that Ȳ and β̂1 are independent. Now we have everything we need to compute the variance
of β̂0.

V ar(β̂0) = V ar(Ȳ ) + x̄2V ar(β̂1)− 2x̄Cov(Ȳ , β̂1)

=
σ2

n
+ x̄2

σ2

Sxx
− 0

= σ2

(
1

n
+

x̄2

Sxx

)
8.3.3 Estimation of the Variance of the Error

The expressions for the variances of the least squares estimators are both in terms of σ2, the
variance of the error term ε. In almost every case, this variance is unknown, thus we will
use the samples themselves to estimate σ2. Recall that if we use Ȳ as an estimator of the
population mean, we showed that the estimator

1

n− 1

n∑
i=1

(Yi − Ȳ )2

is an unbiased estimator for the population variance. Things are little more complicated
here because of the dependence on x. Recall that for each sample Yi we are estimating the
mean E(Yi) with the estimator

(̂Yi) = β̂0 + β̂1xi

Thus it seems reasonable to suppose that an estimator for the variance σ2 of the error is
based on the sum of squares error SSE =

∑n
i=1(Yi − Ŷi)2. In fact, the estimator

S2 =
1

n− 2

n∑
i=1

(Yi − Ŷi)2 =
1

n− 2
SSE

is an unbiased estimator for σ2. Note that the 2 in the denominator of S2 is the same as the
number of parameters βi which occur in the model. Since by linearity

E(S2) =
1

n
E(SSE)

it suffices to find the expected value of the SSE.

E(SSE) = E
[∑

(Yi − Ŷi)2
]

= E
[∑

(Yi − β̂0 − β̂1xi)2
]

= E
[∑

(Yi − Ȳ + β̂1x̄− β̂1xi)2
]
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where we used the fact that β̂0 = Ȳ − β̂1x̄ (this is the definition of β̂0). Thus we have:

E(SSE) = E
[∑

[(Yi − Ȳ ) + β̂1(x̄− xi)]2
]

= E
[∑

(Yi − Ȳ )− 2β̂1
∑

(Yi − Ȳ )(x̄− xi) + β̂2
1

∑
(x̄− xi)2

]
= E

[∑
(Yi − Ȳ )− 2β̂1

∑
(Yi − Ȳ )(x̄− xi) + β̂2

1Sxx

]
Since we have: ∑

(Yi − Ȳ )(x̄− xi) = Sxy = β̂1Sxx

and ∑
(Yi − Ȳ ))2 =

∑
(Y 2

i − 2YiȲ + Ȳ 2)

=
∑

(Yi)
2 − 2Ȳ

∑
Yi + nȲ 2

=
∑

(Yi)
2 − 2nȲ 2 + nȲ 2

=
∑

(Yi)
2 − nȲ 2

we have:

E(SSE) = E
[∑

(Yi)
2 − nȲ 2 − 2β̂2

1Sxx + β̂2
1Sxx

]
= E

[∑
(Yi)

2 − nȲ 2 − β̂2
1Sxx

]
=
∑

E(Y 2
i )− nE(Ȳ 2)− SxxE(β̂2

1)

We know the last term from above. For the first two terms, recall that for any random
variable X, since V ar(X) = E(X2) − [E(X)]2 by the Magic Variance Formula, E(X2) =
V ar(X) + [E(X)]2. Thus we have:

E(Y 2
i ) = V ar(Yi) + [E(Yi)]

2

= σ2 + (β0 + β1xi)
2

and

E(Ȳ 2) = V ar(Ȳ ) + [E(Ȳ )]2

=
σ2

n
+ (β0 + β1x̄)2

and

E(β̂1
2
) = V ar(β̂1) + [E(β̂1)]

2

=
σ2

Sxx
+ β2

1
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Plugging both of these in, we get:

E(SSE) =
∑

(σ2 + (β0 + β1xi)
2)− n

(
σ2

n
+ (β0 + β1x̄)2

)
− Sxx

(
σ2

Sxx
+ β2

1

)
= nσ2 +

∑
(β0 + β1xi)

2 − σ2 − n(β0 + β1x̄)2 − σ2 − β2
1Sxx

= (n− 2)σ2

where in the last line, everything else cancels if we expand all the squares, evaluate the sum,
and simplify. Thus we conclude that S2 is indeed an unbiased estimator for the variance σ2

of the error term ε.

Now that we have unbiased estimators for β0 and β1 and know (or know how to estimate)
their variance, we can use them to construct confidence intervals and hypothesis tests for the
β0 and β1. It is reasonable (and useful) to assume that the error ε is normally distributed.
This is beyond the scope of this course, but these ideas (and more!) can be found in a book
(or further course) on statistics.

8.4 Bayesian Statistics

The final topic we will discuss in this class is Bayesian statistics. We will only have time
for a brief introduction, since this could be the subject of an entire course. Since Bayesian
statistics is currently very popular (and since Nate Silver’s election prediction methodology
relies heavily on Bayesian ideas), it is worth taking a look at what it’s all about.

8.4.1 Introduction

Bayesian statistics is a fundamentally different approach to statistics from the frequentist
philosophy. In the frequentist approach, which we have used thus far in this course, we
consider a population to described by a probability distribution with one or more unknown
parameters. These parameters have “true” values which we do not know, but which we can
estimate by taking samples from the population and computing estimators such as the sam-
ple mean. The more samples we take, the closer our estimate is to the “true” parameter value.

In the Bayesian approach, these population parameters do not have “true” values but are
themselves distributed according to a probability distribution. We start with a “best guess”
as to the distribution of the population parameter (the prior distribution). We then take
samples from our population and use Bayes’ theorem to “update” the population distribu-
tion to obtain a posterior distribution. We can repeat this process as many times as we
want. The idea is that each time we collect more data, we learn more about the probability
distribution of the parameter of interest, and

Let’s see how this works mathematically. First, recall Bayes’ theorem for two events A and
B:

P(A|B) =
P(B|A)P(A)

P(B)
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The denominator is typically unknown, so we can expand it using the Law of Total Proba-
bility, using any partition of the probability space. The partition {A,Ac} is typically used,
giving us the following form of Bayes’ theorem.

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)

We can rewrite this as follows:

P(A|B) =
1

P(B|A)P(A) + P(B|Ac)P(Ac)
P(B|A)P(A)

Suppose A is the event we are interested in studying. The prior probability of A is P(A),
the probability of A occurring before we know any additional information. Suppose we then
observe that B occurs. We are interested in updating the probability that A occurs now that
we know this new information. In other words, we want to know P(A|B). The term P(B|A)
above is the probability that our new event B occurs given A occurs; this is the likelihood
of B given A. The fraction in front on the right hand side is just a constant. Thus we can
write:

P(A|B) ∝ P(B|A)P(A)

This proportion captures the essence of Bayesian statistics: the posterior distribution is pro-
portional to the product of the prior distribution and the likelihood. Let’s now rework this in
terms of probability density functions and population parameters.

Suppose we have a population whose distribution is parameterized by θ (as before, θ could
be a population mean, proportion, variance, or some other parameter). We will write then
density function for the population as fθ(y). (The population could be discrete, in which
case we have a pmf pθ(y)). Since we are now Bayesian statisticians, there is no true value for
θ. Rather, we assume that θ is distributed according to some probability density function
which we will call g(θ)4.

Now we take n independent samples Y1, . . . , Yn from the population. We form the likelihood
function of our data like we have in previous sections:

L(Y1, . . . , Yn|θ) =
n∏
i=1

fθ(Yi)

If the population is described by a pmf pθ(y), the likelihood function is the joint probability
of our data. If the population is described by a density pθ(y), the likelihood function is not
quite a probability (since the probability of a point is 0), but we will treat it as if it were
one. The posterior density is the conditional density of the parameter θ given our samples
Y1, . . . , Yn, which we will denote:

g(θ|Y1, . . . , Yn)

4This could be a pmf or a density; for the purposes of our discussion, we will assume that the population
parameters are continuous random variables, so are described by a probability density function.

18



Using Bayes’ theorem with these densities (pretending that densities are probabilities), we
get:

g(θ|Y1, . . . , Yn) =
P(Y1, . . . , Yn|θ)g(θ)

P(Y1, . . . , Yn)

=
L(Y1, . . . , Yn|θ)g(θ)∫
L(Y1, . . . , Yn|θ)g(θ)dθ

where the integral in the denominator is taken over all possible values of θ. Since the
denominator is a constant, we get the same proportionality:

g(θ|Y1, . . . , Yn) ∝ L(Y1, . . . , Yn|θ)g(θ)

In other words, the posterior density is proportional to the product of the prior density and
the likelihood of the data. Let’s think about how we could use this in a real-world example.

Example. You are a pollster interested in the proportion p of voters in Rhode Island who
plan on voting for Gina Raimondo. If you were a frequentist statistician, you would take a
sample of, say, 100 voters and use p̂ the proportion of Raimondo supporters in your sample,
to estimate p. This time, we are a Bayesian statistician. First we need to choose a prior
distribution for p. Much of the art of Bayesian statistics involves what to choose for the
prior distribution. One choice (sometimes called the naive choice) is that since we have no
information at all, we could choose a Uniform[0, 1] distribution for p as our prior. Now
we poll voters from our population. Using the poll data and Bayes’ theorem (the version
above), we can update the probability distribution for p using our poll data. This posterior
distribution for p does not give us an exact value for p (it is still a probability distribution),
but since it will not be uniform, it will give us a better understanding of the proportion p of
voters who prefer Raimondo. We can keep taking polls, updating our probability distribution
for p each time, to get a better and better sense of p

8.4.2 Conjugate Distributions

In some cases, there is nice relationship between the prior and the posterior distributions
(this is not in general the case). This will depend on the distribution of underlying pop-
ulation and what is chosen for the prior distribution. For a given population distribution
parameterized by θ, if the posterior probability distribution g(θ|Y1, . . . , Yn) and the prior
probability distribution g(θ) will belong to the same family, we say that the prior and pos-
terior are conjugate distributions. We will look at two examples of this.

1. Binomial population

You are a pollster interested in the proportion p of voters in Rhode Island who plan
on voting for Gina Raimondo. Take a sample of size n from the population. Let Y be

19



the number of voters in your sample you prefer Raimondo. Then Y ∼ Binomial(n, p).
Recall the pmf for Y is:

p(y) =

(
n

y

)
py(1− p)n−y y = 0, 1, . . . , n

Let’s express this as a function of p. It takes the form

g(p) = Kpa(1− p)b

where a and b are constants related to the distribution of p, and K is a normalizing
constant. This is not a probability distribution for p, but we could turn it into a
probability distribution on [0, 1] by choosing the normalizing constant K so that g(p)
integrates to 1 over [0, 1]. The usual conjugate prior for a binomial population is the
beta distribution, which is a slightly altered version of this:

g(p) =
pα−1(1− p)β−1

B(α, β)

where α and β are chosen to reflect your existing belief of the distribution of p, and
B(α, β) is a normalizing constant chosen so that g(p) integrates to 1 over [0, 1]. The
values α and β are called hyperparameters of the prior distribution, to distinguish them
from p, which is a parameter of the population. Note that in the special case where
α = 1 and β = 1, we have g(p) = 1, which is the uniform distribution on [0, 1]. If Y is
a beta random variable with parameters α and β, then the mean of Y is:

E(Y ) =
α

α + β

Let’s use Bayes’ theorem (as above) to find the posterior distribution of p given our
binomial data Y from our n samples and a prior distribution of Beta[α, β]. Bayes’
theorem says that:

g(p|Y ) =
L(Y |p)g(p)∫
L(Y |p)g(p)dp

Note that we write our data as Y instead of Y1, . . . , Yn since Y is a binomial random
variable incorporating data from n samples. Let’s look at each of these pieces in turn.
For the likelihood of the data:

L(Y |p) =

(
n

Y

)
pY (1− p)n−Y

The prior distribution for p is the beta distribution given above. Multiplying this by
the likelihood, we get:

L(Y |p)g(p) =

(
n

Y

)
pY (1− p)n−Y p

α−1(1− p)β−1

B(α, β)

=

(
n

Y

)
1

B(α, β)
pα+Y−1(1− p)β+(n−Y )−1
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Putting this all together:

g(p|Y ) =

(
n
Y

) 1

B(α, β)
pα+Y−1(1− p)β+(n−Y )−1

∫ 1

0

(
n
Y

) 1

B(α, β)
pα+Y−1(1− p)β+(n−Y )−1dp

=
pα+Y−1(1− p)β+(n−Y )−1∫ 1

0
pα+Y−1(1− p)β+(n−Y )−1dp

=
pα+Y−1(1− p)β+(n−Y )−1

B(α + Y − 1, β + (n− Y )− 1)

Where the last line follows since the denominator is the integral of the numerator,
so is the normalizing constant. Comparing this to the beta density, we see that the
posterior distribution is also a beta distribution, with hyperparameters α + Y and
β + (n − Y ) (The 1s are not part of the hyperparameters; look back at the density
for the beta distribution to see why this is the case). Thus we have updated our prior
based on our data and obtained a posterior in the same family as the prior but with
updated hyperparameters. Essentially, we have added the number of “sucesses” (Rai-
mondo supporters) to α and the number of “failures” (non-Raimondo supporters) to β.

We can use the mean of the posterior distribution as an estimate for p. We call this
the Bayes estimator for p, denoted p̂B. The Bayes estimator is given by:

p̂B =
α + Y

α + Y + β + (n− Y )
=

α + Y

α + β + n

We can write this estimator in a slightly different form:

p̂B =
α

α + β + n
+

Y

α + Y + β + (n− Y )

=

(
α + β

α + β + n

)
α

α + β
+

(
n

α + β + n

)
Y

n

This is a weighted average of mean of the beta prior and the sample proportion Y/n
(the MLE for p). The prior mean is given less weight for larger sample sizes, whereas
the weight of the sample proportion increases as the sample size gets larger. Since
E(Y/n) = p, the Bayes estimator is not an unbiased estimator for p. In most cases,
Bayes estimators are not unbiased.

2. Normal population

This time, suppose we have a normal population with unknown mean µ and known
variance σ2

0. If we choose a normal distribution as a prior for the population parameter
µ, then the posterior distribution for µ will also be normal. Mathematically, here’s
how this goes.
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Suppose we choose as our prior for the parameter µ a normal distribution with mean η
and variance δ2. That is, our prior is Normal(η, δ). Let Y1, . . . , Yn be a random sample
from the population, and compute the sample mean Ȳ . Then the posterior distribution
for µ is also a normal distribution with mean η∗ and variance δ∗ given by:

η∗ =
δ2nȲ + σ2

0η

nδ2 + σ2
0

δ∗2 =
σ2
0δ

2

nδ2 + σ2
0

The Bayes estimator µ̂B is the mean of the normal posterior distribution. We can
separate the sum in the numerator to write it as:

µ̂B =
nδ2

nδ2 + σ2
0

Ȳ +
σ2
0

nδ2 + σ2
0

η

Thus the Bayes estimator for the population mean is a weighted average of the sample
mean Ȳ (the MLE for µ) and the mean of the prior η. Again, as the sample size n
increases, the weight given to Ȳ increases, while the weight given to the prior mean η
decreases.
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